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I. BACKGROUND

Numerous evaluations of the acoustic field radiating from a baffled
transducer have appeared in the published literature. An important feature
is that these theories are applicable for a wide range of parameters.
Approximations, such as those describing an axisymmetric sound beam in the
far field (Frauntofer zone) can substantially reduce computational cost, but
they are not necessary. Linear theory is valid when the source level is
sufficiently low. Even then, diffraction effects in the near field, which
lead to localized cancellations and reinforcements, complicate the task of
correlating near field measurements to far field propagation properties.

The situation becomes more complicated when one tries to increase the
propagation range by raising the source level. It is logical to try to ove-
rcome effects such as dissipation and scattering by generating higher level
signals. Such attempts inevitably lead to a greater rolz for nonlinear ef-
fects. One of the effects of nonlinearity is to divert energy from the
fundamental signal to higher harmonics, which is equivalent to lowering the
efficiency of the transducer. In the face of these concurrent effects it is
apparent that developing a unified theory for nonlinear effects in sound
beams is a challenging matter. However, such a theory is necessary it un-
derstanding ol the distortion phenomena is tec be enhanced. A prime example
of the earlier lack of insight is the observed differences between the dis-
tortion of the compression and rarefaction phases of a signal, which had no

analog in simpler types of acoustic waves.

A variety of approaches have been emploved to study the effects of non-
linearity in this svstem. One approach has relied on a conventional
perturbation solution of an approximate nonlinear wave equation. Such an
analvsis seems to give verv good results near the transducer face. However,
it quickly breaks down with increasing range due to assumptions that are

made in the perturbation steps.

An investigation of properties in the far field was developed based on
an approximation as a quasi-spnerical wave. Such a formulation assumes that
the wave arrives at the transition to the far field (e.g. the Ravleigh
distance) without substantial prior distortion. Hence, the spherical wave
description is inherently limited to cases where the transducer excitation
is comparitiveiy luow level. This type of analysis also leads to certain
anomalies, such as the fact that the level of distortion is dependent on the
choice for the spherical transition distance, which may be arbitrarily

chosen beyond the Rayleigh distance.




Another approach that has been widely employed is founded on a version
of Burgers’ equation that has been modified to account for spreading and
diffraction -- this is commonly referred to as the Zabolotskaya-Khokhlov
equation. After its original exposition in the Soviet literature, the first
soluvtions of the equation for harmonic excitation of the projector were ob-
tained by finite differencing the position and time variables. Those
results were difficult to obtain due to the inefficiency of the approach, sc
an alternative was developed by the Tjgttas and Hamilton based on the fact
that a harmonic input must result in a signal that is tempcrally pecriodic.
Consequently, the signal in this case may be expanded in a Fourier series
whose coefficients are position dependent. Using the method of harmonic
balance to make the solution satisfy the Z-K equation leads to coupled sets
of ordinary differential equations for the Fourier coefficients. Although
the solution could be obtained more efficiently in this manner, the basic
approach is limited by the restricted nature of its input. Extending the
procedure to treat multi-harmonic inputs would require a substantial in-
crease in the number of harmonics that would need to be retained, and the
method is completely invalid for predicting the signal generated by a tran-
sient input. Furthermore, tbe degree tc whicn the Z-K equation is suitable
for predictions of the highly diffractive field near the projector had not

been explored.

II. RESEARCH TECHNIQUE

The primarv goal of this project was to develop an overall description
of transducer radiation in which tinite amplitude effects diffraction, and
spherical spreading are treated consistently, without limitation to a
speciific spatial domain ov a specific type of input to the projector.
Initially, the mathematical tools for this work were those used to develop
the nonlinear King integral for nonlinear effects arising in the sound beam
generated by a harmonic input [J. H. Ginsberg, Journal of the Acoustical
Society of America, 76, VNo. 4 (1984) 1201-1214].~ These techniques combined
singular perturbiition theory and asvmptotic analysis of the behavior in

specific domains.

The general approach uses the King integral in linear theory, which is
a Fourier-Bessel integral transform, to develop the second order source
terms that generate nonlinearities in the response. There are two kinds of
nonlinear effects that arise at the second order. Some produce terms that
remain bounded as the signal propagates. (One such effect is associated
with the fact that the input from the transducer originates from a moving

Poundarv., ratho~ Lhane e much suppier Aescyiprion, ¢ = U.) The smaiiness



of the acoustic Mach number leads to the conclusion that these fixed mag-
nitude effects cannot account for measured levels of distortion. The other
group of nonlinear effects arise from resonance-like phencmena. These terms
lead to distortion that grows with increasing distance. Shocks ultimately
form from this effect, unless dissipation is adequate to overcome the non-
linear distortion process. It is this cumulative growth effect that needs

to be evaluated.

The growth effects in the second order terms are evaluated by using
asymptotic integraticn techniques to identify the portion of the second or-
der terms that grow most rapidly witl, increasing range. The aforementioned
breakdown of conventional (i.e. regular) perturbation solutions is avoided
by introducing coordinate transformations that essentially are based on the
recognition that cumulative growth is a singularity. The transformation is
selected such that replacing the physical position coordinates by the new

variables cancels the singular terms.

The singular perturbation scheme had earlier been successful in deriv-
ing solutions for sound beams generated by a variety of sources. The first
studies considered the case of harmonic input. The cumbersome evaluation of
coordinate transformations was replaced by a harmonic series representation,
for which the effort to evaluate each harmonic is equivalent to that re-
quired to solve the linear case [Hsu-Chiang Miao, Ph.D. thesis, Georgia
Institute of Technology, Sept. 1985]. Results derived in this manner were
shown to be accurate in comparison to experimental data from a region
several piston radii from the projector out to the Rayleigh distance and
beyornd, which generally marks the onset of farfield behavior.

Subsequent work extended the basic nonlinear King integral to non-
axisvmmetric sound beams, such as those arising when the normal velocityv on
the surface of the projector resembles an azimuthal harmonic. Another ex-
tension of the analytical technique demonstrated the suitability of the
method to treat situations where the projector is driven by two inputs at
arbitrary frequency; the parametric :rray, in which the frequencies are
relatively close, is included in that general case. In order to further
generalize these works a major effort involved evaluation of the sound beam
radiating from a baffled projector whose input is an arbitrary periodic
function. This capability would be employed to explore the implications of
an "anti-nonlinearity" concept. In it, the projector is manipulated to gen-
erate a signal that is phase-inverted from the waveform that would be
obtained at the shock formation distance from a conventional input. (This
concept will be discussed in greater detail later.)




Although the foregoing study was generally successful, it became ap-
parent that further work, Involving transient inputs to & projector, would
be too cumbersome for the pertirbation approach. It therefore was decided
to develop a time-domain numerical simulation of finite amplitude sound
beams. The physical assumptions used by Kuperman and McDonald to develop
the NPE (Nonlinear Progressive wave Equation) computer code were judged to
be suitable for sound beams, but the coordinate systems used in their for-
mulation were not suitable. Therefore, attention was devoted to modifying
MDE ro treal wave propagation in a cylindrical geometry in which the primary
propagation is axial. After the modifications were implemented, the primary
question was what is the proper way in which NPE should be initialized? In
brief, NPE requires as initial conditions a waveform occupying a specific
spatial region, which forms a window. It then uses a time marching proce-
dure that propagates this window at the overall sound speed, while the
waveform disperses within the window. Additional questions pertained to
whether one could introduce nonreflective outer boundaries for the window,
which would have permitted usage of a smaller window, and whether a new
coordinate system could be introduced, in order to allow account for the
spherical spreading of the beam without employing an excessively fine
numerical mesh transverse to the propagation direction. The general method
bv which any of the developments were validated was to consider threc cases
where results are reasonably well known: linear theory for steady-state har-
monic waveforms, linear theory for transient waveforms, and nonlinear theory

for harmonic input waveforms at moderate excitation levels.

A new line of research evolved out of two aspects of the analyses dis-
cussed above. The Fourier series representation of the nonlinear King
integral grew out of a decomposition into an angular spectrum repre-
sentation, in which each transverse wavenumber was represented by two
wavelets. Far from the axis of symmetrv, these wavelets have the appearance
of conical wavefronts that propagate inward and outward relative to the axis
of svmmetry. (Near the axis of the sound beam, the wavefronts both appear
to be locally planar and perpendicular to the axis.) In order to understand
the interaction between wavelets, it was decided to return to waveguides.
Development of a ray description of the propagation and interaction of
finite amplitude waves would substantially assist understanding of the dis-

tortion mechanisms in sound beams.

The development of a ray description was further motivated by the work
on phase-inverced nonlinear inputs. A few earlier experiments had use
reflection from a free surface to invert the projector waveform. However,
the theories uscd to support those experiments were highly approximate be-
cause little was known analytically regarding the reflection of finite
amplitude waves. It seemed logical to follow the successful study of ray




propagation in waveguides, which had considered oblique reflection from
rigid surfaces, with a study of oblique reflection and transmission from
planar interfaces between two media. Although it had initally been an-
ticipated that work in this question would be confined to fluid media, it
soon became apparent that the derived theory could be applied with equal
ease to elastic solids. The derivation of the thecry, one of whose aspects
is a modification of Snell’s law to account for the dependence of propaga-
tion speed on particle velocity, was achieved by using perturbation
techniques to identify the dominant nonlinear effects, and then using the
method of characteristics to study theose effects.

PROJECT ACHIEVEMENTS

A. Extended Analvtical Descriptions of Sound Beams

The present project began by completing the studies of nonaxisymmetric
1 and two-frequency excitations [17]. With the completion of those works.
several questions remained to be answered. The nature of the perturbation
analvsis limited the range at which the respective solutions could be ap-
plied, because shocks play an increasingly prominant role with increasing
range, especially in the absence of dissipation. Furthermore, the King in-
tegral has limited usefulness for far field evaluations, even in the linear
case. This is co because diffraction effects appear as an oscillatory in-
tegrand whose fluctuations become increasingly severe with increasing
distance, which correspondinglv requires increasingly fine resolution in any
numerical integration scheme. Thus one need was to extend the analytiral to
farcher ranges and/or higher input levels.

Parallel to this thrust was the desire to investigate a councept by
which a projector could be driven at higher input levels than that currentlv
taken as the saturation limit, which is the level at which strong shocks
form near the projector. Since shocks are rich in higher harmonics. which
do not propagate well, saturation serves as an absolute limit on the level
to which a projector may usetully be driven. The enhancement concept was
suggested by a well-known "reciprocitv" feature of finite amplitude planar
waves. Suppose the signal generated bv a harmonic input is allowed to
propagate (and distort) through a certain distance. Next consider the case
where the source generates a signal whose waveform is opposite in phase from
the received waveform in the first case. If dissipation is insignificant,
the waveform received in the second case will be identical to the harmonic

signal generated bv the projector in the first case.




The significant aspect of this phenomenon for sound beams emerges when
one considers the combination of this reciprocal behavior with the far field
tendency to undergo spherical divergence. For a specified signal level, the
rate at which distortion grows in spheciical wavec~ is significantly lower
than it is for planar waves. Thus if the tendency of an oppositely dis-
torted wave to undistort could be used to push the zone in which shocks
would form out bevond the Ravleigh distance, it was reasoned that the result
would be a substantial retardation in the the onset of significant nonlinear
distortion. This was the concept, but no prior study had addressed the
problem of determining the finite amplitude signal generated by an arbitrary
periodic input to a projector, which is the tvpe of excitation associated

with a phase-inverted distorted signal resulting from a sinusoidal input.

The project expended a major effort to extend the nonlinear King in-
tegral to treat arbitrary time-periodic projector inputs [7.101. It used
those results to assess the feasibility of using phase-inverted inputs to
extend the range of a saturation limited projector. The analysis for this
case was found to be extremely unwieldy, due to the complications inherent
to the strong interactions of harmonics in the presence of strong diffrac-
tive effects. This necessitated considering a variety of phase shifts for
the higher harmonics relative to the fundamental, rather than the simple
phase inversiou that is suggested by the theory for planar waves.
Theoretical estimates of the net gain to be derived by this concept range
from 2 to 5 dB for the signal level received at the farfield, when realistic
limitations are imposed on the projector. The uncertainty in the gain stems
from a total absence of experimental data for sound beams resulting from a
multi-harmonic input to a projector. (In the terminologv of a parametric
array. thne downshift ratio is two.) The lack of experimental data was a
serious handicap., because the theorv that has been developed seems to fail
in some respects in the limiting case of a parametric arrav, due to a sin-

gularty that arises when two primarv frequencies approach a common value.

B. Numerical Modeling of Sound Beams

As a result of the complications encountered in continued extension of
the analytical procedures, the next effort was devoted to developing an ac-
curate scheme for developing a general time domain numerical prediction of
distortion phenomena in sound beams resulting from arbitrary inputs. Such a
description could also be used for transient excitations, and it presumably
would be easier to incorporate dissipation and shock formation in a numeri-
cal prediction. This effort involved modifying the NPE computer program to
treat the axisymmetric geometry of a sound beam, and then developing a
method by whicn NPE could be driven. Numerical evaluations began with




studies of linear propagation for steady-state harmonic waves 21 ., as we

as for transient excitation in the form of a single sine pulse 26 .

The results showed that NPE can be used at much closer distances to the
source than other researchers using parabolic equations had previously
believed. The key aspect of this disclosure was that the quality of the
near field computations is highly dependent o.a the manner in which -he
moving window is initialized. The earlier analytical and numerical stud.es
of the modified Burgers’' equation for sound beams had relied on a fundamen-
tal plane wave assumption that the pressure particle velocity at the face of
the projector is proportional to the axial particle velocitvy. This assup-
tion was compared in the project studies to the result obtained when a
linear theory. either the Ravleigh or King integral, is used to initcialize
the moving window extending outward from the projector face for a few
wavelengths. The waveform predicted for various locations according o each
method of initia.ization was then compared to the integral equation predic-
tion. The results obtained by initializing the NPE window were found to be
accurate (the values were within 0.1% of those obtained from numerical
evaluarion of the integral equation) for distances as small as one tenth of
the Ravleigh distance, while the plane wave assumption produced resulcs tha:

agreed with analvsis onlv outward from the Ravleigh length.

work mnearing ~ompletion and soon to be reported 27,28 has alreadv

shown that the qualitv of NPE is equallv good for nonlinear effects. The
results have heen compared to precise experimental measurements at a wvariets
of ranges. and :transverse positions. Comparisons of its predictions with

the nonlinear King integral are equallv good.

Eavlv in the project [PE was reduced to run on desktop computers. but
the number of computations involwved in running it from the projector face
out to several multiples of the Ravleigh distance is quite substantial.
Work required to complete the Ph.D. thesis of the graduate assistant
developing NPE involves using the nonlinear King integral to initialize the
moving window., and therebv increase the efficiencv of NPE for far field
predictions. Another efficiency alreadv implemented as a project task into
NPE addresses the requirement that the transverse width of the window be
sufficiently large to consider the pressure at the edge to be zero. The
idea here is to rezone the mesh divisions of the window to extend bevond the
main lobe whenever the signal at the edges is sensed to be a significant
fraction of the overall signal. These efficiencies are especiallv ap-
propriate to performing studies of multiharmonic inputs to the projector,

because such studies require much finer divisions within the window.




C. Analvses of Reflection and Refraction of Noniinear Waves N

As the analyses aimed at generalizing the nonlinear King integral
progressed, it became apparent that one of its primary features is that it
treats the signal as a combination of wavzles propagating in varior:s direc-
tions extending over an argular spectrum of transverse wave numbers. Desire
to understand such wave interactions led to a question whether the perturba-
tion techniques could be employed to study waveforms reflected from
surfaces, which was believed to be a better understood process.

The first study of veflection effects {12,18] developed a ray descrip-
tion of the propagation of waves in a waveguide whose walls are rigid. It
was shown that large amplitude excitation of a nonplanar mode could be
modeled bv using the method ol irages to follow the ravs forming that mode.
The distortion of the signal along each ray was shown to be determined by
the =otal propagation distance from the original source. and the results
were prover to be identical to those obtained from a modal solution pre-

wiously derived in the project 17

The ahilitv to describe finite amplitude signals in terms of ravs was

Fireh 17 intended :o

er extended bv a sequence of stndies which were initial

study obligue reflection of a finite amplitude acoustic wave from a free

This question was motivated bv the observation that several pre-

wiong experiments devored to the "anri-nonlinearity" cencept had reflected
the sigsnal obliquelw from o free surface in order to invert the waveforms.

itowas found eventualiv that new techniques using the method of charicteris-

ire necessary To solve This problem.  what emerged from that analvsis

'

isinn of a nonlinear Snell's law. which was as-

2t wavetorm distorcion

The procedur - wherebr this resuls was obtained. which is equallvy ap-

plicible far reflection and transmission at planar interfices bhetween media.
is innovative The analvsis began with a conventional perrurbation analvsi
hased on the smillness of “he particle velocitw relative to the phase speed

of a4 planar wawe. This revealed that the first order signal is the linear

approximation. For waves in fluids, the process involves reflection and
transmission of planar acoustic waves, while stress waves in elastic solids
feature dilatazional and shear waves, in what is known as mode conversion.
Th: propagation angles of these waves is dictated by the linear Snell’'s law,
which is obtained bv matching the linear (constant) trace velocities along
the interface. The second order ana'wvsis revealed that the dominant non-
linear effect is the tendencv of a planar acoustic and/or dilatational wave
to form second harmonics. whereas shear waves and nonlinear interaction be-

tween incident and planar waves give rise to nonlinear effects that are much



weakey {8,13,15]. However, further analvsis of the second order signal led
to an apparent cdilemma, In that no sclution constructed in this manner could
satisfv the boundary condition. This difficulty was traced to an assumption
made at the start of the perturbation analvsis. where it was implicitlv as-

it

sumed that the directions of the nonlinear rays are the same as those of the

linearized solution.

Rather than patching the solution in an awkward procedure the
knowledge of the dominant nonlinear effects was used to formulate a new
solution using the method of characteristics. This involved recognizing
that the characteristics of planar waves in a two-dimensional svstem lie on
the surface of a cone in space-time coordinates. The apex angle of this
core must change with time, according to the parcicle speed associated with
the that cone. The specific ra. associated with the signal emanating from
the boundarwy at any instant represents the projection of a characteriscis
ontn the plane of spatial coordinates in the characteristic space. The
orientation of this rav must be chosen such that the combination of signals

emanating from the boundary satisfv in total the boundary conditions.
btained in this manner con<ists of a generalization of
ction and transmission of linear waves. The nonlinear

\
L
s taw Is similar to the linear one., except that the phase speeds are

instantaneous values of the waves arriving and departing from the inter-
ace.  Consequentlv. the transmissior and reflection angles fluctuate.
Similacly the refiectior and transmission coefficents are like those of
tinear theorw, except that thev depend on <he nonlinear transmission and
reflectinn angles. Awav from the interface, the each wave (ac ustic,

dilatational. or shear) propagates according to nonlinear theorv for planar

waves, with the distortion of the first two depending on the distance of
propagation measured along the vav.  Evaluating the waveform veceived at a
tuation is complicared, because the waves ar-

specific field poins in this sit

ovirinate from a region on the interface. and

because the roflectinn and transmission coefficients have values that depend
on these angles. with the ancles being dependent on the instantaneous phase

inotarn depend on the unknown particle velocities.

=
1

Steeds

The compliications described above were resolved bv an iterative proce-
dure, in which the ph.se of ecach tvre of wave is treated as the independent
variable.  Then the value of time corresponding to arrival of this phase at
the selected field point is determined after a convergent value for the par-
ticle welocity is obtained. This technique was used first to descrihe
reflection of a nonlinear dilatational wave at a stress free boundarv. The

resnlts showed that the reflection process lessens the severity of the non-

linear distcertion processes.  Seweral factors influence this reduction.




primarily these are (1) a decrease in the amplitude of thc uilatational wave
due to mode conversion, and (2) phase inversion, which corresponds to the
"anti-nonlinearity" concept.

At this tims, work is underway to evaluate the case of critical in-
cidence [20]. Qualitative consideration of the theory indicates that a wave
will have a dual personality, in which the portion of the phase in which the
particle velocity is negative will be reflected as a propagating planar wave
(sub-critical incidence). while the phase of positive particle velocity will
evanesce perpendicular to the interface. If this result is confirmed by the
analvsis., one can envision numerous interesting experiments that might lead
to potentiallv useful tools for detecting spatial heterogeneities in
material properties, as well as for detecting interfacial cracks in solid

media.
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Finite amplitude distortion and dispersion of a nonplanar mode

in a waveguide
J. H. Ginsberg and H. C. Miao®

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 1 May 1985; accepted for pubiication 22 Aprii 1»386)

The perturbation method of renormalization is used to study the effect of nonlinearity on a
hard-walled rectangular waveguide. The excitation would induce only the fundamental
nonplanar symmetric mode if the system were linear. The analysis develops a solution that
satisfies a nonlinear wave equation for the velocity potential, as well as all boundary
conditions. The response consists of a pair of oblique planar waves that interact through
second-order excitation of the true planar mode. The investigation discloses that in the high-
frequency limit the signal has a quasiplanar behavior. In contrast, for very low frequencies
exceeding the cutoff value, the oblique waves are essentially independent. The distortion is then
a result of self-refraction, in which the particle motion shifts the wave fronts and rays. The
transition between the low- and high-frequency limits is marked by the appearance of
nonlinear frequency dispersion, which produces asymmetrical distortion of the waveform.

PACS numbers: 43.25.Cb, 43.20.Mv

INTRODUCTION

Finite amplitude effects in a waveguide feature multidi-
mensional phenomena involving interacting waves. In linear
theory, a mode in a hard-walled waveguide may be con-
structed from pairs of oblique planar waves that are reflected
from the walls. The present study will employ the same type
of decomposition to show that distortion resulting from non-
linearity displays a phenomenological change as the excita-
tion frequency is increased. This transition is associated with
an anomaly contained in previous studies, which only con-
sidered the low-frequency case.

Initial explorations of finite amplitude nonplanar modes
in waveguides employed the perturbation method of multi-
ple scales in a rudimentary fashion that considered selected
aspects of wave interaction.'~* A different method of investi-
gation was developed to study waves radiating from a flat
plate.*® To a certain extent, the latter studies were academic
in nature. The systcm they treated featured a periodically
supported plate of infinite extent. They assumed periodicity
of the signal parallel to the plate, which meant that energy
was propagating inward from infinite boundaries. This ap-
parent violation of the uniqueness condition, nevertheless,
proved to be instructive, because the system could be studied
by a vaniety of analytical techniques. The perturbation meth-
ods of multiple scales and of renormalization, and the meth-
od of characteristics, mutually agreed for the case of a spa-
tially sinusoidal excitation. One significant aspect of their
result was the prediction of self-refraction, in which the
wave fronts and rays of constant phase are distorted by the
particle velocity.

Although the plate problem did not treat a physically
realizable system, the relevance of these investigations to

waveguides was recognized in a subsequent investigation.'®

°' Present address: General Motors Research Laboratories, Warren, M1
48090-9055.

The basis of that work was that there are nodal lines in ihe
plate system along which the velocity component parallel to
the surface of the plate vanishes. Such lines are perpendicu-
lar to the plate, as they are in linear theory. This observation
led to the conclusion that the infinite plate analyses had actu-
ally derived a single mode in a waveguide.

The treatment of general excitation in a waveguide per-
formed in Ref. 10, which was a straightforward extension of
the method of renormalization, disclosed a type of super-
position principle. Modes having identical phase speed were
found to form distinct groups, whose distortion in self-re
fraction was a consequence of only the particle velocity ans
ing from that group. The overall response consisted of a lin-
ear combination of the response in each group.

A similar analysis had been used to study waves radiat-
ing from cylinders.!"-™* One of those studies'® identified a
paradox associated with very long axial wavelengths. One
would expect that if the wavelength along the axis of a cylin-
der is large, so that the rate of variation in that direction 15
very gradual, then the response would approach that for the
case of a two-dimensional system, in which the axial wave-
length is actually infinite. This was found to be the case.
except that the distortion phenomena in the limit were found
to be too weak by a factor of one-half. This dilemma was
resolved by noting that distinct modes in the case of axial
variation coalesce only when the wavelength is actually infi-
nite.

These observations also apply to the investigation of
waveguides.'® For example, as the width of a waveguide is
increased, the earlier analysis predicts that the distortion of
the planar mode will be twice as strong as that of the funda-
mental symmetric (2.0) mode. Although the explanation of
coalescing effects for infinite transverse wavelength (i.e., the
planar mode) is plausible, it nevertheless is unsettling from a
physical viewpoint. Distortion arises from higher harmonic
souces that are generated by nonlinearity in the entire acous-
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tic field. Could it be that minor discrepancies between the
long and infinite wavelength cases accumulate to create the
discrepancy? Lack of experimental data prevented an earlier
response to this question, but discussions with researchers
currently involved in such activity'® sparked the present
authors’ interest in exploring these concerns.

The analysis presented herein treats an excitation of
only the (2,0) mode in a hard- walled waveguide. This limi-
tation is imposed primarily to reduce the analytical compli-
cations inherent to a more general study of multimode prop-
agation. It also facilitates isolation of physical phenomena,
such as the manner in which the nonplanar and planar
modes interact nonlinearly. It will be shown that the (2,0)
mode excites the planar mode in an insignificant fashion,
unless wL /c,>27, where L is the transverse width of the
waveguide, w is the (circular) frequency, and c, is the linear
speed of sound. The phase speed of the (2,0) mode, then,
differs slightly from that of the planar mode. This near-coin-
cidence sets up a mode interaction that is reminiscent of the
beating response exhibited by an undamped, one-degree-of-
freedom oscillator that is subjected to harmonic excitation
close to, but not at, the natural frequency.

The modal interaction leads 1o a smooth transition to
the planar mode response with increasing frequency, in the
manner one would expect. The analysis will confirm the ear-
lier theory for waveguides when wL /c, is not large. It will
also show that the transition from the earlier theory to the
high-frequency case is marked by frequency dispersion, in
which the waveforms are remarkably similar to those ob-
served in the nearfield of intense beams of sound.'®

I. FCRMULATION

A pressure excitation of the fundamental, symmetric,
two-dimensional mode in a hard-walled waveguide may be
written as

Pli=o = €puch sin(wt) cos(k, x) ,
e«l, —L/2<x<L/2, (1)

where p, is the ambient pressure, ¢, is the speed of sound at
ambient conditions, and the transverse wavenumber k, is
related to the duct width L by

k, =2#/L. (2)

The question to be addressed here is the effect of nonlinearity
associated with the finiteness of € on the waves that propa-
gate in the positive z direction as a result of this excitation.
The equations of continuity, momentum, and state may
be combined to form a single nonlinear wave equation gov-
erning the velocity potential'” under isentropic conditions,

3%
o’

_9[t.s _ 30")’ )
a:[cg,w" ”(a: + Vo v¢]+o<¢). (3)

where the nonlinearity coefficient 8, is the constant associat-
ed with the second-order term in a polynomial expansion of

the pressure perturbation p as a function of the density per-
turbation p at fixed entropy,

V4 -
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P/ (pocd) =p/po + (Bo— 1) (p/p5) + - <. 4
Because the analysis shall only address the role of quadratic
nonlinearities, Eq. (4) may also be applied to liquids by let-
ting By =1 + B/24.

The pressure is related to the potential by

P
f—ii—’i—— +2 1 Sv4-96=0. &)
o (po +p) at
From Egs. (4) and (5) p, p, and & have the same order of
magnitude, so elimination of p from these relations yields

p—~po[3—¢+~w v — —("“‘)]ww

5/
(6)

The boundary conditions for ¢ are obtained by making
the particle velocity normal to the walls vanish,

éﬁ =0 atx= + £ M
Ix
as well as by matching Eq. (6) atz =0to Eq. (1). Also, for
uniqueness, it is required that the signal consist of a wave
propagating in the positive z direction.
The initial stage of the solution technique employs a
regular perturbation expansion of the potentiai in terms of
the small parameter ¢,

¢=6¢1+€2¢2+"" (8)

Matching like powers of € in the differential equation and
boundary conditions leads to a sequence of equations in the
usual manner. The order € terms are

3’s,

v, — =0, (Sa
) 1 a2 )
acd] -0, (9b)
¢9x x= +L/2

2
% . =i%°{exp[i(wr—kxx)]

(9¢)

where c.c., in general, shall denote the complex conjugate of
all preceding terms. The order € perturbation equations are

C(Z)V2¢z - M = -59—- [—(ﬂo - 1)(8d ) + v‘ﬁl'v‘t\] ’

+exp[i(wt + &k, x) ]} +cc.,

g A
(10a)
9¢, =0, (10b)
dx £= 3 L/2
8:153, 1<a¢,)2 !
= === - =V, .V 1
gt liao [cf, ar 2 ! é'] oo (10e)

. EVALUATION OF THE POTENTIAL

It is a straightforward matter to solve Eqgs. (9) by sepa-
ration of variables, with the result that

é, = (ca/4w){exp(i(wr — k. x — k,2) ]

+exp[i(wt + k,x ~k,2)]} +cc., (i

where
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k=w/c,, 8=sin"'(k./k),

k,=kcos@=(k?—k21)V2,
Only the case of propagating, rather than evanescent, waves
is of interest, which means that k, <. This condition is
obtained whenever w exceeds the cutoff frequency for the
fundamental mode, @ > 27cy/L.

Equation (11) represents the first-order solttion as two
trains of planar waves propagating symmetrically relative to
the centerline x = 0. These waves are depicted in Fig. 1,
where ¢, and e, are the individual directions. The angle &
measures the direction in which these waves propagate, rela-
tive to the centerline. Each wave represents the reflection of
the other from the rigid wulls. Increasing either the frequen-
cy wor the width L decre2ses 8. In the limit #—0, the combi-
nation of the two trains of waves has the same phase speed as
the planar mode, and the transverse variation is much more
gradual than it is in the axial direction. Hence, the (2,0)
mode at high frequencies seems to be locally planar.

The first step in deriving @, is touse Eq. (11) to form the
inhomogeneous terms in Eq. (10a). This yields
a9,

ot?

= — (i/8)cGwB{exp[2i(wt — k x — )c,z)]
+ exp[2i(wt + k. x — k,2)}}
— (i/8)c5w By — 2(k 27k ?) Jexp[2i(wt — k,2) ]
+cc. (13)

(12)

Ve, —

The first two exponentials in Eq. (13) excite second har-
monics. Such signals propagate parallel to the two waves
forming é,, which are homogeneous solutions of the linear-
ized wave equation. The corresponding particular solution
may be obtained by the method of variation of parameters, in
which the amplitude of the homogeneous solution is consid-
ered to be an unknown function. The last inhomogeneous
term is a planar second harmonic. Such an excitation
matches the planar mode for the waveguide when k, = k.
Hence, decreasing k. brings the planar part of the excitation
into close coincidence with the planar mode for that frequen-
cy, which means that this excitation is nearly resonant at
small k. The method of variation of parameters will also
yield the solution associated with this term. Thus let

&, = u(x.2) exp(2wt) + c.c.,

u = Clz){exp[ — 2i(k.z + k,x)]
+exp| — 2i(k,z— k,x)]}
+ D(z)exp( — 2ik,z) .

(14)

It should be noted that the unknown functions C and D de-
pend on the axial distance only. The periodic nature of the
excitation eliminates dependence of these functions on 1.
Similarly, the rigid wall conditions, Eq. (10b), imposed
along x = + w/k,, could not be satisfied if C or D were
functions of x.

The result of requiring that Egs. ( 14) satisfy Eq. (13)is
a set of uncoupled differential equations for the amplitude
functions. After Eq. (12) for &, is applied, these equations
are found to be
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FIG. 1. Geometry of the oblique waves.

C* —4ik,C' = — }ifw,
D" — 4k, D’ +4K1D = — Yiw(B, — 2k2/k7),

where a prime denotes differentiation with respect to z.
The particular solutions of Egs. (15) are readily found
to be

C, = (Bw/32k,)z,
(B 2

D =_22(FP _ 2}

F 16(k§ kZ)

It is convenient to let the constant coefficients of C, ,and D,
appear explicitly in the corresponding complementary solu-
tions, which are therefore written as

C. = (Bw/32k,)[C, + C, exp(4ik,z) ],

(15)

(16)

(17)
D =~ ‘1“; -kﬁ—‘z’—?zz—)[Dl exp(4,2) + D, exp(4;2)}],

where 4, and 4, are roots of the characteristic equation
Al —4ik A, +4k1=0. (18a)
The roots are found, with the aid of Egs. (12), to be
Ay =22k, — k), A, =2k, +k). (18b)

The expressions for ¢,, obtained by substituting Eqgs.
(16) and (17) into Eqgs. (14), must satisfy the radiation
condition. In order for ¢, to represent an outgoing wave in
the z direction, it must only contain negative imaginary ex-
ponentials in the z vanable. Satisfaction of this condition i
requires that C, = D, = 0. The remaining terms yield

u =i'(i(z+ C){exp[ — 2itk,z + k,x))

324,
7 2
~2kz—k _ﬂ_(i__)
+ exp( (k,z—k.x)]} AVIrE
X [exp( — 2ik,z) + D, exp( — 2k2)] . (19)

Note that C, describes complementary solutions of the wave
equation associated with second harmonics of the oblique
waves, whereas D, is the planar eigenmode at the second
harmonic frequency.

The case k,=0 corresponds to a true planar mode,
which is governed by the Earnshaw solution for a nonlinear
planar wave. However, letting k, —0 in Eq. (19) results in
a singularity in the coefficient of the last terms.

Such behavior resembles the case of resonance in a one-
degree-of-freedom oscillator, whose equation of motion is
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X+ w'x=Fsinr. (20)

When —w, the amplitude of the particular solution for
Q3w increases, as does the portion of the complementary
solution that cancels the initial value of the particular solu-
tion. The combination of these two solutions is a temporal
beating response that rises from zero at the initial time. As
the difference between Q and w decreases further, the period
of each beat increases, until ultimately at 2 = w, only the
rising portion remains. The corresponding resonant re-
sponse is 2 harmonic, at frequency w, whose amplitude in-
creases linearly with time.

In the same manner, the singularity of Eq. (19) atk,—0
may be removed by an appropriate selection of the coeffi-
cient of the homogeneous solutions. The coefficient C, is not
used for this purpose because the singularity is associated
with the planar mode.

In order to study k,—0, the troublesome terms in Eq.
(19) are expanded in a Taylor series about &, /%,

ky=(k*—k2)\?=k—\(ki/k)+ ---,

2n
exp( — ik,z) = exp[ — itk — ik i/k)z + -]

= [1+4 (ki/2k)z+ -] exp( — ikz) .
The corresponding asymptotic form of the planar terms in
Eq. (19) is

_ ﬂ(_f_g - %)[exp( — 2ik,z) + D, exp( — 2ik2)]

. 'k2
= _l“L(&__zT (1+‘__-‘f+1)|)
16 \ k2 k- 2k

xexp,( — 2ikz) . (22)

The singularity for k, —0 is canceled if the leading term in
D, = — 1. Thuslet

D =—-1+D*, (23a)

where the coefficient D * may depend on &, in any manner

that satisfies the condition
J

2

2 Bow

.
lim D =4, (23b)

k—0 k2

where 6 is a bounded number. Similarly, the coefficient C| is
restricted to depend on &, in any manner that is not singular
as k. —0.

The second-order potential is now found from Egs. (14)
and (19) to be

&, = :i(’:) (z + C))exp(2iwt)

z

X [exp( — 2ith) + exp( — 2ithy)]

_ _‘2(1/(_3%. - %) exp(iwt) {exp[ — i(¥, + ¥)]
+(—1+D%exp[ —i(¥y + W)k /k, ]} +cc.,
(24)

where

h=kz+kx, U=kz-kx. (25)
The foregoing expression for @, satisfies the wall conditions,
Eq. (10b). At this juncture, 4, does not satisfy the boundary
condition, Eq. (10c), which specifies that there should be no
second-order contribution to the pressure at z = 0. This con-
dition could be satisfied by appropriate selection of the coef-
ficients C, and D *. However, both of these describe homo-
geneous solutions for @, and they are not singular as k, —0.
Thus they represent effects that are O(€?) at all locations. In
contrast, observable distortion phenomena are associated
with second-order terms that grow with increasing distance.
The bounded O(€?) effects might be significant, in compari-
son to the cumulative growth effects near the excitation, but
both are small in that region. The bounded effects are over-
whelmed by the growth effects with increasing distance.
Therefore, setting

C,=D*=0 (26)
leads to insignificant errors at locations where nonlinear ef-

fects are substantial. The corresponding potential function
obtained from Egs. (8), (11), and (24) is

¢
b= ezo exp(iwt) [exp( — i) +exp( —i¥,)) + € 3572 exp(2iwt) [exp( — 2iv,) + exp( — 2iY,) ]

_é:Lw_(!&__Z_) exp(2iwt) {expl — i(&, + ¥p)] ~ exp[ — iU, + Un)k /K, |} + c.c. + O(€)) .

16\k? k2

(27)

where O(€) refers to terms having that order of magnitude at all locations.

ill. EVALUATION OF THE PRESSURE

Prior formulations of nonlinear propagation using the velocity potential have generated the potential in the form of a
separation of variables solution. Specifically, the expression was a product of functions of each space variable and time. In that
situation, it was necessary to consider individually the state variables of particle velocity and pressure.

The present case is different because the potential is now represented as two planar waves, each of which is described by a

single propagation distance parameter. In general, proper behavior of the expression for pressure in a simple planar wave
ensures comparable results for the other state variables. The pressure is related to the potential function by Eq. (6). Omission
of the quadratic products in that relation ignores terms that are uniformly O(€*), which is comparable to the error in Eq. (27)
for 4. Thus
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pcs b Ot

2
r__ —iﬂ-+0(e2) = —%eicxp(iwt)[exp( — i) + exp( —ity)]) —1_16€Ji3011(<_2 exp(iwt)

2
X [exp( - 2iy,) + exp( — 2i),) ] — %ez(ﬁo:—z — 2) exp(2iwt)

X{exp[ —i(¢, + ¥,)] — exp[ — i(¥, + )k /k, |} + cc. + O(€) .

(28)

The first set of O(€) terms grows with increasing z in all cases, and the second set grows when k,/k is very small. Such
functional behavior is a result of using z and x as position variables, neither of which consistently matches the spatial scaling of
the nonlinear processes. In order to ascertain the correct spatial dependence, a near-identity transformation in the form of a
coordinate straining is employed. A different transformation is introduced for each wave variable ¢, and t,.

The presence of O(€*) terms in Eq. (28) that depend on ¢, + ¥, indicates that the waves interact. Further examination of

the form of Eq. (28) suggests the trial transformations

¥, =a, + €[F,(a,a;) expliot) + F,(a,a,) exp( —iwt)] + - j=12,

(29)

where the complex conjugate term, denoted by an overbar, is introduced in order to ensure that the transformation is real.
Substitution for ¥, and ¥, into Eq. (28), followed by expansion in Taylor series in powers of ¢, yields

P/pocs = — lei expliot) [exp( — ia,) + exp( — iay)] — J€[F, exp(2iwt — ia,) + F, exp( — ia,)

+ F, exp(2iwt — ia,) + F, exp( — ia;)] — K€ Bolk 7k, )z exp(2iwt) [exp( — 2ia,) + exp( — 2ia,)]
— 4 [Bolk?/k}) — 2] exp(2iwt){exp[ —i(a, + a;)] — exp[ —i(a, + @)k 7k, 1} +cc. + O(€) . (30)

The task now is to determine the functions F, and F,
that cancel all O(€*) second harmonic terms which grow
with increasing z. For this, the terms that dependon a, + a,
are apportioned equally between F, and F,. The appropriate
choice is found to be

iBok? . 1/, k%
F, = 'i';:i zexp( —ia;) - T(ﬁoki —2)

X[exp( ia,) exp[ ia (k l) ia k”
—lay) — —lay| = —ia—ty
’ k, k,

. 2 2 (31)
F,= —-li(;(k: Z exp( —iaﬂ—%( ok——Z)

x

X [exp( ia,) exp[ ia (k 1) ia k ”
— ) = T T
k! kl

These straining functions do not cancel all O(€?) terms
in the pressure. The remaining terms, which are created by
the complex conjugates of F, and F,, contain combinations
of the a, and a, variables. Their presence is not a problem,
because they are independent of . Their role is to cancel a
mean value of the pressure that is created by the coordinate
transformation.

It is convenient at this juncture to write the coordinate
transformations and pressure resulting from Eqgs. (28)-
(30) in real functional form. The pressure is governed by

pz =i[sin('wr—a,) + sin(wt — a,) ]
Prs 2
1 k
5057 -2)
x{2cos(a, — a;) — cos[2a, — (k /k,)(a, + a;))
—cos[2a, — (k/k,)(a, +a;) ]}, (32)
where
915 J Acoust. Soc. Am, Vol 80, No 3, September 1886

[
v, =k,z+ k x

=a, + §eBy(k */k, )z sin(wt — a,)
— ie[Bo(k*/k %) — 2] {cos(wt — ay)

— oot —a,— (k/k, — 1)(a, +a;) ]}, (33a)
v, =k,z — k, x
=a, + }eBo(k */k, )z sin(wt — a,)
— le[Bolk?/k2) — 2] {cos(wr — )
—cosf{wt —a, — (k/k, — l)(a, +a,)]}. (33b)

The foregoing relations fully define the pressure. The value
of p at specified x, z, and ¢ may be determined by solving Egs.
(33) simultaneously for the values of @, and a., and then
using those values to compute p. It should be noted that the
terms in Egs. (33) that couple @, and a, do not explicitly
grow with z. However, as k, /k—0, their magnitude in-
creases and their axial wavenumbers approach k for planar
waves. This sets up a beating interaction that has the appear-
ance of growth (see Sec. V).

IV. ASYMPTOTIC TRENDS

Equations (32) and (33) are generally valid, but exami-
nation of the behavior at limiting values of k, /k provides
important insights. For &, /k<1(wL /c,>27), the coordi-
nate transformation may be expanded in a power series in
k, /k. First, apply the identity for the cosine of a sum to the
last term in Eq. (33a).

¥ =a, +l€30£25in(wt-al) '{'5(1801(2 - 2)
2k ky

2
2

XSin[a)l —a, — —;—(-lii - 1)(:1l + a;)]

. [1 k
XSm[?(k' — l)(al +a:)] .
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Since k/k,—~1+ k2/2k?*+ ..., the leading terms in a
Taylor series expansion of Egs. (33) are

¥ ~a, + JeBokz sin(wt — a,)

+ ieBo(a, + ay)sin{wt — a;) . (35a)
When the same operations are performed on Eq. (33b), the
result is

thy~a, + {eBokz sin(wt — a;)

+ lefola, + ay)sin(wt — a;) . (35b)
According to these relations, the values of @, and «, may be
estimated as a; =, + O(ekz). Hence, the factor
€(a, + a,) may bereplaced by € (¢, + ¥,)=2¢k,z, whichis

approximately 2ekz because of the smallness of k, /k. Thus
J

2
) =.§.[sin(wt—a|)+Si"(“”"a2)]+%€J( 0%_2)

Poca

x

the coordinate transformations have the common limiting
form

¥, ~a; + JeBokz[sin(wt — a;) + sin(wt ~ a,)]

=a, + efokz sin(wt -4 ;“2)cos(“' ;az) . (36)

from which it follows that
v, — =2k x~a, —a,,
¥, + ¥, =2k, z~a, + a, + 266.kz

Xsin(a)t— d +az)cos(a' — az) .
2 2

The same analysis is now applied to Eq. (32). Series expan-
sion in powers of k, /k yields

(37)

x{2cos(a, — @) —cos[(a, —a;) — (k1/2k*) (@, + a))] —coe[(a, —a,) ~ (k1/2k%)(a, —a,) ]}

~€ sin(wt-— 4 +a:)cos(a' —az)‘
2 2

The next step is to substitute the first of Egs. (37) into
the foregoing, and to use the resulting expression for p to
eliminate a, + a, between the second of Egs. (37) and Eq.
(38). The pressure expression that is derived in this manner
is

P ~esin(wt~—k,z + Bkz d )cos(k,x) . (39)
Pt P

If k, =0, this expression reduces to the well-known so-
lution for a planar finite amplitude wave at moderate ampli-
tudes.'® For very small k_/k, the signal described by Eq.
(39) is a quasiplanar wave. The distortion is meassured by
the value of Sykzp, the change in the axial phase variable
fromits value wt — k,zin linear theory. The wave is not truly
planar because the amplitude varies with transverse position
as cos(k,x). Comparable phenomena are encountered in
the farfield of cylindrical and spherical waves, whose ampli-
tude is not uniform in the transverse direction.'"'®

Suppose that the limits of Egs. (32) and (33) for small
k,/k had been derived without considering the interaction
terms (those containing both @, and a,). The result would
have been the same, except that £, in such an expicssion
would have been replaced by | 8,. In other words, haif the
nonlinear effect when k, <k is due to interaction between
the oblique waves.

The situation for comparatively low frequencies (ex-
ceeding cutoff) can also be examined asymptotically. Sup-
pose that k, /k = O(1) (recall that k, < k for propagating
modes). In that case the interactive terms in Egs. (32) and
(33) are not asssociated with beating interactions, so they
remain O(€”) at all locations. Such effects may be ignored.
The remaining terms may be written as

P=Pi+Py P/pss =lesin(wt—a,); j=1.2,
(40a)
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(38)

where
U, =a, +Bo(k*/k)z2(p,/pocs) - (40b)

The coordinate straining for each wave p, is reminiscent
of that for a planar wave, with an important exception. The
nonlinear effect is measured by the difference between the
nonlinear and linear spatial phases, @, — ¢,. In an isolated
planar wave, this difference is proportional to the propaga-
tion distance, which would be (k,z + k,x)/k for waves
propagating in the direction of either oblique wave. Instead,
the distance parameter for each wave in Eq. (40b)isz k /k,.
It follows that although Eqgs. (39) specify a superposition of
the oblique waves, the presence of one affects the other by
altering the spatial dependence for the distortion phenome-
na.

Another viewpoint for the low-frequency (long axial
wavelength) case may be obtained from a different resolu-
tion. Define new strained coordinates 7.§ such that

ay=5§+n, ay=£—7. (41)
Return now to Egs. (32) and delete the second O(€) term in
each, because those terms are not growth effects when
k./k = O(1,. The variables a, and a, are removed from the
functional depenuence by forming the sum and difference of
those equations after substitution of Egs. (41). This yields

k.z=¢ + 1eBy(k*/k, )z sin(wt — E)cos(7) ,

k.x =n— €By(k?*/k,)z cos(wt — &)sin(n) .
The corresponding expression for pressure obtained from
Eq. (32) is

p/pucs = €sin(wt — &) cos(n) + O(€) . (43)

(42)

The significance of this representation of the signal be-
comes apparent when the particle velocity is evaluated. For
this, the oblique planar wave decomposition is useful. The
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approximation v = p/pc, is appl’ :able to weakly nonlinear,
as well as linear, planar waves. The propagation directions e,
and €, in Fig. 1 may be used in conjunction with Egs. (32)
and (41) to represent the individual contributions. Thus

v = Jcoele, sin(wt — £ — 1)

+e;sin(wt — &+ 1)) + O(€2). (44a)
The components of particle velocity are, therefore,
v, =V€ = coe(k,/k) sin(wt — &) cos(n), 44b)

v, =Vee, = —coelk, /k) cos(wt — &) sin(7) .

These expressions may be substituted into Egs. (41), with
the result that the new strained coordinates are found to be
governed by

3
k,Z = g"f ‘1430 k z.gi ’
2 Tkl ¢
1, k3 v 43
k,x=mn+ z—=.
K 7601(,1(, S

This form was derived in the earlier analysis that as-
sumed noninteracting modes.'® Constant values of £ and 7
are wave fronts and rays, respectively, for the phase of the
wave in Eq. (43). The velocity components transverse to
theselinesarev, and v, , respectively. Hence, the dependence
of the wave fronts onv,, and of the rays on v, , was ascribed to
self-refraction in the earlier work.

V. EXAMPLE

The trends identified in Sec. IV indicate that, at low
frequencies [k, = O(k)], the distortion process involves
only the harmonics of the fundamental mode for the wave-
guide. In contrast, at high frequencies (&, <k), the tendency
is to form a quasiplanar wave that propagates like the true
planar mode. Identification of these trends leaves the ques-
tions of when the transitions to each situation occur, and
what happens in the intermediate regime?

These matters may be addressed by numerical exam-
ples. Quantitative results, in general, are obtained by solving
the coupled transcendental equations (33) for the strained
coordinates a, and a,, corresponding to specified values of

=

2

x
-~ |

<o
% |
: *\
-2.00 4
0.0 0.5 1.0 1.5 2.0
wt/2"

FIG. 2. Waveform on-axis atz = 3.05 m for 140dB at the origin, L = 0.2 m,
/= 10kHz. — : interacting waves; - - - : noninteractive theory; - - - : quasi-
planar wave.
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FIG. 3. Waveform on-axis at z = 3.05 m for 140dB at the origin, L = 2.0m,
f=10kHz. —: interacting waves; - ~ —: noninteractive theory; - - -: quasi-
planar wave.

x, z, and t. These values then yield the pressure according to
Eq. (32). If desired, a waveform may be generated by incre-
menting wt through an interval 27, and that result may be
Fourier analyzed to determine the frequency response. One
simplification in performing a numerical evaluation is that,
for specified properties of the fluid, the value of p/p,c? ob-
tained from Egs. (32) and (33) depends only on the inde-
pendent variables kx, kz, and wt and on the value of AL
(because k. /k =2m/kL). For the discussion that follows,
the fluid is air (o, = 1.2kg/m>, ¢, = 343 m/s, 8, = 1.2) and
F=10kHz.

A case of comparatively low frequency is illustrated in
Fig. 2, for which L =0.20 m and € = 0.0014166, corre-
sponding to an excitation of 140 dB re: 20 «Pa at the ongin.
For comparison, the noninteractive theory, Egs. (40), and
the quasiplanar limit, Eq. (39), are also shown in Fig. 2. The
unimportance of the mixing between the oblique waves is
apparent, as is the fact that the distortion associated with the
planar theory is stronger.

Altering the frequency for the next example would
change the overall degree of nonlinearity. For example, the
distance for shock formation in the planar wave is

o= 1/(eBok) . (46)

Since the degree to which wave interaction is significant de-
pends (nondimensionaily ) only on the value of kL, the var-

wt/2n

FIG. 4 Waveform on-axis at z = 3.05 mfor 140dB at the onigin, L = 0.5 m.

/= 10kHz. — :interacting waves; - - - : noninteractive theory. - - - : quasi-
pianar wave.
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4.00

2.00

C. 00

pIogcyl/ (X 10%)

-2.00

-4.00¢
0.0

wt/2n

FIG. 5. Waveform at x =0.125 m, z = 3.05 m for 140 dB at the origin,
L =0.5m, f= 10kHz. — : interacting waves; ~ - - : noninteractive theory;
- - - : quasiplanar wave.

ious phenomena shall be explored by changing L. Thus the
next case, illustrated in Fig. 3, is for L = 2 m. with the other
parameters unchanged. The quasiplanar approximation is
now very close to the new theory.

The situation for a transitional case is shown in Fig. 4,
which corresponds to L = 0.5 m. Neither approximation is
accurate here. The difference between the axial-phase speeds
of the planar harmonic created by nonlinearity and the true
planar mode is relatively small. This leads to frequency dis-
persion in combination with the usuval amplitude dispersion
that is associated with a sawtooth waveform. The effect is
asymmetrical between compression and rarefaction; it is re-
markably similar to the nearfield distortion observed for baf-
fled transducers.'®

The relatively drastic transition from one approximate
theory to another, resulting from increasing AL by a factor of
10, has a direct explanation. The frequency dispersion phe-
nomenon is attributable to spatial beating described by the
last terms in the coordinate transformations, Egs. (33). The
trigonometric identity for the difference of cosines applied to
these terms shows that

cos{wt —a,) —cos[wt —a, ~ (k/k, — 1)(a, +a,)]
= —2an{(a, +a,)(k/k, — )] sin[wt + ia, —a,)
—Wa, +a)lk/k)];, ij=12, i=j. (47)

Lt/27

FIG. 6. Waveformatx = 0.1m.z = 3.05 mfor 140dB at theorigin, L =0 $
m, /=10 kHz. — : interacting waves; - - - - noninteractive theory; - - - :
quasiplanar wave.
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FIG. 7. Axial dependence of frequency response along ¢ = U for 140 (% at
theongmn, L =0.5m. /= 10kHz. — interacting waves; - — - poninterac-
tive theory, - - - : quasiplanar wave

The first sinusoidal factor is independent of time; it gov-
erns the wavelength of the beats. When the argument of that
sine term is very small, compared to =, the factor is well
approximately by (a, +a,)(k/k, — 1). Since a, and a,
may be approximated by &,z, small values of the aforemen-
tioned argument correspond to cumulative growth of the
frequency dispersion effect.
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i80 !
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45 {

0 L
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FIG. 8. Axial dependence of frequency response along x = 0 I m for 1404B

attheorgin, L =0.5m, /= [0kHz. — interacting waves; - - - noninter-
active theory; - - - : quasiplanar wave.
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FIG 9 Transverse dependence of frequency response along z = 3.08 m for
140dBat the ongin. L = 0 Sm, /= 10 kHz. — interacung waves; - — -
noninteractive theory. - - - quasiplanar wave.

It follows that the prominence of frequency dispersion is
indicated by /[ 2k, 2(k /k, — 1) ] In contrast, the signifi-
cance of the sawtooth distortion effect is measured by the
rano of the axial distance z to the planar shock distance 0. A
compa:iison of the two nondimensional fz-tors indicates
whether traavency dispersion will be noticeable in the pres-
ence of sawtooth distortion. Thus, define a beating param-
eter B according to

z/o
7/ 2kzthk 7k, — D]
AP RN
= ieﬁl)(k:)z(l—_-*” _,k 3 d )
- (—k /k=)' -
This paramete: 15 5.08, 0.05, and 0.798 for Figs. 24, respec-
tiveiy. Cases where B 1s substantially greater than unity can
be anticipated to be well described by the earher noninterac-
tive theory for duct modes. whereas values that are much less
than unity will closely fit the planar wave approximation.

Another aspect of the distortion process is displayed in
Figs. 5 and 6, which are waveforms at off-axis locations. The
lire x/L =} 15 a node according to linear theory, as well as
the quasiplanar-nonlinear approximation. However, Fig. 5,
which corresponds to such a location, shows that only the
odd harmonics are nulled in the oblique wave theories.
Hence. the fundamental frequency of the signal at the
“nodes” is twice the excitation frequency. Note that both
oblique wave theories indicate that the tendency to form a
sawtc oth profile is still present.

The nuiling of the odd harmonics was explained in the
earlier analysis of the plate problem as being a result of self-
refraction.*® The rays in the noninteractive theory were
shown to be distorted in the direction of the transverse veloc-
ity component. This caused the nodal ray to cross the axial

B =

(48)
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line of zero-linearized pressure twice per axial wavelength
thereby setting up the sc ond harmonic signal. It is appareni
from Fig. 5 that this effect also occurs in the presence of
froquency dispersion resulting from interaction of the
vhiique waves.

A waveform for a general location appears in Fig. 6. The
even harmonics are more prominent than they were in Fig. 4
because the odd harmonics are lessened by the proximity t.
the nodal line. This effect is accompanied by amplitude dis-
persion, as evidenced by the tendency to a sawtooth profile,
and by frequency dispersion, as indicated by the asymmetry
between compression and rarefaciion.

A different perspective is offered by the amplitude and
phase distribution curves in Figs. 7-9. These curves were
obtained by Fourier series decomposition of the computer
waveforms into

p1 =zp,, sinfrw(t ~1,) —y,]:
Pofo n

Y, =0,

(49;
where 1, is the .: rivaltime of the fundamental in the interaci-
ing-oblique wave theory. The amplitudes p, are displaved
for the three nonlinear theories. However, the phase lags y .
are displayed only for the latest theory—they vanish in the
other descriptions in which the waveform distorts symmetn-
cally.

Although only three harm. “aics are displayed in Figs. 7-
9, their trends are also indicati "< of higher harmonics. The
earlier observation of the increased relative contribution of
the even harmonics in the vicinity of the “nodal” linex = £
4 1s evident in Figs. 8 and 9. In addition, Fig. 7 sk »w< tha
the phase of each harmonic tends to lag behind that of 1\
predecessor by a uniform am ount that increases as the signai
propagates. This effect was also predicted for sound
beams,” whose waveform n the nearfield s much like Fig
4.

VI. CONCLUSION

The excitation of the true planar mode. which provides a
mechanism for the interaction of the oblique waves forming
the fundamental symmetnc mode. has been shown to be sig-
nificant for large values of L. In the limit. multidimension-
ality is only manifested as sinusoidal vanation in the trans-
verse direction, much lke the direcuvity factor for
nonuniform spherical waves in the farfield.'”

In the earlier (small kL) theory, the modes are formed
from obliquely propagating waves whose interaction is only
manifested by a change in the distance parameter governing
the distortion. If each wave were truly independent, that
parameter would have been the distance over which the
wave had propagated. Instead. the distortion of the oblique
waves depends on the axial distance. That theory has been
shown here to be valid when the underlying assumption of
distinct phase speeds is valid. In that case, AL is moderately
larger than 2, so that the scales with which the signal vanes
in the transverse and axial directions are comparable. The
transition from small to large kL is predicted by the present
theory to exhibit frequency dispersion that is responsible for
distortion of the wavefor:n that is not symmetrical between
co-apression and rarefaction.
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A planar second harmonic always results from quadrat-
ic nonlinearity acting on a mode at any nonzero-transverse
wavenumber. Hence, the phenomena identified here may be
expected to occur when modes other than (2,0) are excited.
Also, itis reasonable to expect a similar coupling mechanism
to arise between nonplanar moedes in some situations. For
example, suppose two such modes are excited. If they have
disparate phase speeds, they superpose according to the non-
interactive theory.'? If the two modes have identical phase
speeds, they combine to form a nondispersive group, for
which the earlier theory is also valid. In the transitional situ-
ation, the modes interact because their phase speeds are
nearly equal, but the degree of interactior. varies spatially
because the speeds are not identical. The iiteraction in this
case may be expected to lead to frequency dispersion. Ana-
!y iical steps paralleling those employed here should be suit-
able for treating nonplanar mode interactions.
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mately one quarter the Rayleigh length. However, there was significant
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R//k Cylindrical coords (z/k, r/k)

T Time t/w
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co, f(R) exp(it) + C.C.
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Mach number at the projector face
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ANALYTICAL TECHNIQUES
Cylindrical spreading and Kutznetzov equaticn.
Not suitable for near fleld,
Rayleigh integral - Ingenito & Williams (1968},
Rogers (1970). Limited to ka = 100 & near field.

Solution not uniformly accurate as z increases.



- —

King integral: GCinsberg 1984; Miao & Ginsberg 1985.
Asymptotic analysis to identify growth effects.
Cumulative distortion phenomena carried from

projector out to far fleld.

Solution does not agree with measurements near the

projector,

Present method - numerical analysis using King
integral ~ goal is to identify cause of breakdown

in asymptotic analysis.




Nonlinear wave equation for velocity potential.
Perturbation expansion : ¢ = € ¢, *+ € ¢, + -
Hankel transform ==> Helmholtz equation in z, t &

transverse wavenumber n

n V
n
¢, = " exp(it - unz) Je(nR) dn + C.C.
n
‘0
- (n® - 1)1/2 v o= l— i R f(R) Jo(nR) dn
Yp TR ’ n o 2i . ot
0
Propagating spectrum : n < ]
Evanescent spectrum : n > 1




SECOND ORDER SOURCE TERMS

2

] 3
3t [(80'1) [‘a'%‘k] + v¢l'v®l]

Form second order terms from linear King integral.

‘72¢2 - 9-—5;—1 = {Jo(mR) Jo(nR), J,(mR) J,(nR)}
3 0
x explf21it - (um + un)z] dm dn

Form $, as a double integral over m & n.

Linear

combinations of products of Bessel functions.




MATCHED ASYMPTOTIC EXPANSION
Jo'(nR) = = J,(nR) ; J,'(nR) = J,(nR) =~ %ﬁ J, (nR)
Near axis (small nR) ==> drop products containing higher
order functions.
Off axis (large nR) ==> drop 1/nR terms.
Result: Off-axis solution for small nR identically
egquals near-axls solution.

OFF-AXIS EXPANSION DESCRIBES NEAR-AXIS REGION ALSO!




SECOND ORDER SOLUTION
Dual wavenumber spectrum

@

¢, = [A,(z) [J,(mR) Jo(nR) - J,(mR) J,(nR)]
0

+ A,(z) [Jo(mR) Je(nR) + J,(mR) J,(nR) 1}

x expl2it - (py_ + y )z] dm dn
m n
Substicute into wave equation.

Cff-axis ==> ignore 1/nR terms.

==> multiple Hankel transform.




Ordinary differential equations for A, and A,.

General form:
2 2

d®a,/dz" - 2 +u_ ) dA./dz + B8.(m, n) A, = T_.(m, n)
3 (um 11 3 BJ( ) j ; )
Solve for arbitrary m & n.
a) Complementary solution:
_ 0,2 0,2 2 _ _
Aj = aj1e + ajze i o 2(um + un)c + B 0
Find Re o, > (um + un) ==> violates radiation cond.
Set a, = 0

j2




b) Particular solution = Fj/Bj.

¢c) Total solution must satisfy b.c.

3¢,

577 ° 0 at z = 0

This yields aj1.

at z

0

w



Dual

integral transform solution:

z N
b, = jl {F1 Bl [Jo(mR) Jy(nR) - J,(mR) J,(nR))

0
N2 1
I, 5= [do(mR) Jo(nR) + J,(mR) J,(nR)1}
2
x explait - (um *+ u )zl dm dn + C.C.
ar _ _ f _ 2 . - 2 u\\1/2)7l
N,o= 1 exp1[un * W (m~ + 2mn + n ) jz !
DJ = (Un + m)2 - (m = n)z + 4
Vv V'n
T, = - 2i—== (B, = 1 - y y + nm)
J HpHm n"no



EVALUATION OF PRESSURE

Integrate numerically to find second harmonic:

802

P2/pc2 = - g T ==> cancel exp(2it) factor




Singularity at m = n: r1 & D1 + 0.

a) Prior developments evaluated this part (only)
asymptotic integration for large z.

b) Singularity is finite: I‘1/D1 -~ z as m » n.

c) Avoid m = n ==> integrrte over 0 S m, n < o

oy segmenting domain and using interior points

~
s

in a se

-~
a

Y
cr

V5]

Jse series expansions of T, % 31 around @ = n
I

[@%

ocrder to avoid loass of precision,

by




Symmetry of integrand ==> integration domain is:
0 s n << e, 0 sm sn

Three regions: m & n in propagating or evanescent range.
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1.

2.

3.

CONCLUSIONS

Nonsecular second order terms (region away from
singularity at m = n) are significant {n
near field.

Reasonable agreement between numerical integration
and experiment for axial propagation properties
near the transducer, except for
? predicted additional nulls ?

Asymptotic integration describes dominant effect

outward from the farthest anti-node.




4, Transverse pattern agrees with experiment -
a) Numerical integration near the transducer,
b) Asymptotic analysis in transition zone.

5. Numerical integratic:i is VERY INTENSIVE.

T
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P1. Nonsymmetric effect in finite amplitude sound beams radiating from
a baffled circular transducer. H. C. Miao (General Motors Research
Laboratories, Warren, M1 48090-9055) and J. H. Ginsberg (School of
Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
30338)

Prior investigations of nonlinear effects in sound beams have treated
cases where the transducer oscillates axisymmetncally. Here, an analysis
of a situation where the harmonic spatial vibration of the transducer has a
cos 8 dependence on the azimuth angle, as would be the case for a piston
that rocks about its diameter, shall be presented. The method of investiga-
tion parallels that employed earlier {H. C. Miao and J. H. Ginsberg, J.
Acoust. Soc. Am. Suppl. 178,539 (1985) ], which used the King integral
to generate nonlinear source terms. A dual asymptotic description based
on assumptions appropriate to the regions very close to, and far from, the
beam axis is obtained, and then reconciled to obtain a uniformly accurate
description. An intermediate form of the solution featuring coordinate
straining transformations is converted to a Fourier time series. The linear-
1zed signal shows nodal lines in the azimuthal direction that match those
of the transducer vibration, and it shall be shown that the higher harmon-
ics exhibit similar behavior. [ Work supported by ONR, Code 425-UA .}

J. Acoust. Soc. Am. Suppl. 1, Vol. 79, Spring 1986
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LINEAR SOLUTION
Hankel transform
transverse distance R <==> transverse wavenumber n

One dimensional wave equation for axial direction.

n Vv
n
$1in - exp(it “nZ) J,;{(nR) cos 6 dn + C.C,.
n
0
Un = (n2 - 1)1/2 ’ vn = ] R f(R) Jl(nR) dn




NONLINEAR FORMULATION
Nonlinear wave equation - exact - define E.O0.S.
Perturbatlion series for velocity potential
¢=e¢l+€¢z+-.a

Form second order terms from linear term, ¢,:

2 azo )
Ve, - -3t - {J,(nR) J,(nR), 1,'(nR) J,'(nR)}
3t .

1
cos 28

Ce I
x expl2it (u + w )z] { } dm dn




MATCHED ASYMPTOTIC EXPANSION

J,'(AR) = 1= J,(nR) = J,(nR)

Near axis (small nR) ==> J (nR) << J (nR)
v+ v

Off axis (large nR) ==> J,'{(nR) = - J,(nP;

Solve for p(z,R,#,t) in each region, then match.




RAf

OFF AXIS

Dual wavenumber 3spectrum ==> multiple Hankel transform.

i)

¢, = {a,(z) [J,(mR) J,(nR) = J,(mR) J,(nR)]

+ A,(z) [J,(mR) J,(nR) + J,(mR) J,(nR)]}
x expl2it - (um + un)z] cosze dm dn

Substitute into wave equation & ignore 1/nR terms ==>

ordinary differential equations for A, and A,.




NEAR AXIS

Form solution from two parts - R.H.S. + dual transform.

imF Fm
¢, = =TT cos?s J,(mR) J,(nR) expl[2it
n¥m

@®
- z dn
(um + un) ] dm dn + ¥, dm
0

Substitute into wave equation ==> identities yield:

2,
7%y - 25 - g (ar) 4, (nR) expl2it
3t

- 2
(um + un)z] cos?s

P
()

3
m

first integral 1s bounded as z increases.



vy

e e - ————

Introduce nR << 1 ==> Neumann—Lohmel Addition Formula
% [J,(x + y) = J.(x = y)]
= Jy(x) J,(y) = J,(x) Jy(y) = J,;(x) Jy(y) + +»-
Thus

J,{(mR) J,(nR) = [J,{(mR + nR) - J,(mR ~ nR)]

N} —

For large z and small nR:

F,(z) F,(z)
- r 1 2 - \
$2 JJ SR, (z2) J,(mR + nR) F.(z) J, (mR nR} ]
0 oy - . cos 8
x expl2it (um + un)“} i dm dn

Differential equations for Fj(z) by substitution,




vy

ASYMPTOTIC INTEGRATION - LAPLACE
The differential equations for A, &% A, off axis,
or F, & F, near the axis, are similar in form:

a2u/dz?

- 2(um + un) du/dz + Bg(m, n) U = I'(m, n)
Case (a) B # 0 ==> U = I'/B ==> no growth effect.
General situation, except for A, & F, when m = n.

Case (b) B8 + 0 ==> U » 2z r/2(um + un) =2> growth.

Case for A, & F, when m = n <==> eigensolutions.




vy

Expand around singularity: m =n - q , [q] << 1

Expand d.e. in terms of gq.

Find general solution (complemetary & particular)
for q # 0.

Find particular solution when q - 0.

Match #3 & #4 ==> coeffs of complementary solution.

Integrate over m spectrum: § << 1

@ n-¢§ [ ©
J dm = J dm + [ dgq + I dm
o] 0 )

n-4§




(a) First & third integrals give bounded solution.

(b) Portion of second integral away from q = 0 becomes
less important as z increases.

(c¢) Letting 8 » = simplifies 1ntegration & affects

subdominant terms only.

After integratlion, dominant part of ¢ consists of a

single spectrum. For z >> 1 & nR << 1 or nR »>> 1:

¢ = J (¢ &, + e26,) dn
0



EVALUATION OF PRESSURE

p ]
—— - 20 J [eP, + 52P2] dn
2 t
p C 0
OFF AXIS
Here P, ~ cos & and P, -~ cos2e
172
1 2v + 1
J,(nR) ~ (5773) {expli(nR = 2= 7n/U)]
+ exp[-i(nR - 33-; ! )]}
-1/2
Hence P = P{R , Lt - Moz * (nR - 3n/4), cos 9§}
"+" ==> axial & inward cylindrical wave ==> ng)
"-" ==> axial & outward cylindrical wave ==> Péz)




NEAR AXIS
Here P, ~ J,(nR) cos 8 and P, -~ J,(nR)2 cos 28
but
ie -ie

cos 8 = (e + e )/ 2

Hence P = P{J,(nR), exp(it - upz + i8)}

Two waves - both axial, opposing circumferentially.




RENORMALIZATION

In either region:
PEJ)

-_j) grows without bound as z increases.

P

Soluti~sn is not uniformly accurate!

Introduce a change of varlables to correct dependence,

—



OFF AXIS - different variable for 1 and 2 waves.

1
(j) inFn 1 172 _ 3
P = € *E;— >7hR exp[it - CzJ. + (inR - l'HTT)] cos 8
: 1/2
uaZ = ey D(n, z) oo {explit - oy

+ (inR - i%n)] + C.C.} cos o



o e anean e auEREEEEEEEEEAEMEEEEEEE B

NEAR AXIS - different variables for each

circumferential wave,.

(3) inF

n .
P =€ 3= J,(nR) exp(it Ly ¢ ie)

n

w,z = ¢, * E(n, z) J,(nR) {exp(it + ¢

J

+

is) + Cc.c.}




MATCH INNER & OUTER EXPANSIONS
NEAR AXIS:

Combine & simplify using ;1 - << ;1 +

t2 >
T = %(c, + £,) ==> P = P(it - ¢, cos 8)

OFF AXIS: 1/2

When nR >> 1 ==> =——0t exp(inR = i%n)
= J,;(nR) + i J,(nR)
Replace A dependence, then compare Wwith near axis

expressions.

==> define




(a) Dependence of pressure alike in both regions.
(b) The 0O(e) coefficient in coordina*e transformation is

larger by a factor of 2 near the axis.

NOTE:
nR >> 1 a=> iligﬁl 0
nR
J, (nR) 1
== 2.2 1
nR << 1 > =Ee 7 Ja(nR)
1 1
Near axis: Replace J,(nR) by 5 J, (nR) + g_igéﬂﬁ_
!
Off axis: Replace J,(nR) by J,(nR) =« i_iziﬂﬂl




RESULT

Convert to real form for n << 1:

1

> . ann
p/pct= —7——{[cos(t - Xa,) + cos(t ~ ra,)] J,(nR)
0
+ [sin(t - la,) - sin(t la,)] J,(nR)} dn
x c08 6 + linear evanescent term
AZ = aJ ZEnFn(ﬂz/X)1/2 {sin(t - )aj + n/4)

x [J,(nR) + U4 S,(nR)/nR|

x J,(nR}} cos 8

+

COSt{t = aa. + 7w/ 4)

C

DR




Y

COMPUTATIONS
Direct evaluation is very complicated.

Strained coordinate a, and a, are uncoupled:

quasi=-one-dimensional ==> Fourier-Fubini series.
EXAMPLE
Parameters by Gould et al (1965) - was axisymmetric.
2,58 MHz , a = 10.1 mm , 2, = 1475 m/s , ka = 114
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Diffraction and Nonlinear Distortion in Sound Beams

as Interacting Wave Phenomena
+ *
J. H. Ginsberg, H. C. Miao , and M. A. Foda

Acoustics and Dynamics Research Laboratory
School of Mechanical Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

Discrepancies between expeéiment and the nonlinear King integral [15]
for a finite amplitude sound beam, which are encountered in the inner
portion of the Fresnel region, are addressed by a new integral transform
solution that accounts for all contributions to second harmonic formation in
the nearfield. Although the result agrees well with experiments, it is
limited in its region of validity. A more general solution covering the
entire domain is obtained by the introduction of a coordinate straining
transformation. Crucial to that step is a new decomposition of the
nonlinear, as well as linear, signal at all locations into groups of gquasi-
conical waves that converge and diverge from the axis as they propagate away
from the projector. Nonlinear distortion in the nearfield arises from
interaction of different transverse wavenumber modes in each group, and also
from interaction between the groups. The latter effect ceases to be

significant in the farfield, whereas the self-distortion arising in either

Present address: Power Systems Research Dept., General Motors Research
Laboratories, Warren, Michigan 48090-9057.
»*

Present address: Department of Mechanical and Industrial Engineering, El-
Mansoura University, El-Mansoura, Egypt.




group grows., The earlier nonlinear King integral, which is derived as the
limiting form for long ranges of the present result, is suitable within the
Fresnel zone, provided that the distance i{s substantially larger than the
piston radius. Fourier series analysis of the long range limit leads to a

sequence of King-type integrals for each harmonic.

LIST OF SYMBOLS

A,B modal amplitudes forming the second harmonic

a radius of the projector

aj’bj Fourier coefficients for the long range approximation

co speed of sound according to linear theory

C.C. denotes the complex conjugate of all preceding terms

Dn parametric combination for the Fourier series

Fn Hankel transform of f(R)

f(R) shading function for the projector displacement

Gn Hankel transform of the pressure at the projector

H(z,n) correction function for behavior near the cutoff frequency of a
mode

JQ(X) Bessel function of order %

K dimensional axial wave number for a planar wave, -w/cO

Nj coefficients affecting A and B (J=1,2,3)

n,m transverse wave numbers

PJ amplitude of the j th harmonic according to the long range
approximation

o acoustic pressure

2



pressure of the quasi-conical waves at a specified wave number
(j=1,1I1)

amplitude of Jo(nR) + 1 J1(nR)

nondimensional distance transverse to the beam axis

mean value residuals introduced by the coordinate straining
transformations (j=I,II)

nondimesional time

undetermined fuctions for the coordinate transformations {(j=I,II)
modulus of Fn

normal displacement of the projector face

nondimensional distance along the beam axis

denotes inward and outward propagating groups of quasi-conical
waves, respectively

strained coordinates for the I and II wave groups, respectively
coefficient of nonlinearity in the pressure-density relation
compiex amplitude of the j th harmonic according to the nearfield
theory

phase of JO(nR) + 1 J1(nR)

modal phase lag at harmonic j

acoustic Mach number at the projector

change of variables for transverse wave numbers

~nase variables for group I and group II nonlinear waves

phase of Fn

axilal wave number for the propagating spectrum

complex axial wave number

phase lag of harmonic j according to the long range approsximation

density at ambient conditions

o




characteristic roots for the modal amplitudes

Aj' "BJ

21 second order potential due to field effects

22 second order potential due to nonlinear conditions at the
projector interface
nondimensional velocity potential

3 perturbation potentials (j = 1,2)

I’ wII phase variables for group 1 and group II1 linear waves

frequency (rad/sec) of the projector




INTRODUCTION

The prediction of the signal generated by a transducer in an infinite
baffle is a challenging task in the linear domain. Good approximations are
available for the Fraunhofer (farfield) region, but analytical treatments of
the nearfield, whose outer limit is characterized by the Fresnel theory of
diffraction [ 1], become progressively less accurate with decreasing range.
Comparable predictions for nonlinear effects that arise with increasing
signal levels are inherently more complicated than their linear analogs. A
variety of approaches have been developed, based on restrictions to specific
domains. A theory for second harmonic generation in the Fresnel region was
developed by Ingenito and Willlams [ 2], and extended by Rogers [ 3]. The
technique there was to use the free space Green's function to superpose the
source radiation associated with nonlinearities in the field equations.
Aside from being restricted to the Fresnel domain and high frequencies
(ka>100), the primary limitation of this formulation is that it does not
address higher harmonics and depletion in the fundamental. Consequently, it

does not provide sufficient information to predict waveforms.

A different approach was employed by Lockwood, Muir, and Blackstock
[ 4] to predict farfield distortion. That analysis, which was based on
Lockwood's treatment of spherical waves [ 5], is limited to situations where
the level at the source is not excessively high. Urder such a restriction,
it is reasonable to assume that the signal is undistorted at some transition
distance in the farfield. However, the resulting theory features some
anomolies, such as an apparent dependence of the predicted signal on the

(assumed) transition distance. Also, the absence of nearfield distortion




leads to a waveform whose shape is distorted in the same manner in the
rarefaction and compression phases. Observations of high intensity sound
beams, such as the measurements by Browning and Mellen [ 6], indicate that
the rarefaction phase tends to broaden and decrease in amplitude, while the

compression phase tends to narrow and gain amplitude.

Numerous analyses of finite amplitude effects have been based on a
Burgers-type equation that was derived by Zabolotskaya and Khokhlov [ 7] for
the nondissipative case, then modified by Kuznetsov [ 8] to account for
dissipation. A variety of techniques have been employed to solve this
equation for a CW transducer. A direct numerical simulation using finite
differences has been employed in several studies by Bakvalov and colleagues,
exemplified by References [ 9 & 10]. Recent works by Hamilton, J. N.
Tjétta, S. Tjétta and colleagues [11,12] have developed more efficient
algerithms based on temporal Fourier series whose amplitudes are position
dependent. The resulting differential equations have, for the most part,
been solved numerically, although an analytical quasilinear approximaticn

has also been discussed [13].

Several approximations must be made to derive the aforementioned
modified Burgers' equation. Most significant are the assumption that the
relationchin between particle velocity and pressure is like that for a one-
dimensional wave, and that the transverse variation is intermediate in scale
to the wavelength and the Rayleigh length, It is generally recognized that
the equation is only suitable in the vicinity of the axis of the sound beam,
30 that the governing equation is often referred to as the paraxial

parabolic equation. However, even within that limitation, there is a




troublesome aspect. In the lossless case, the nondimensional equation for
pressure depends only on the ratio of the Rayleigh length to the planar
shock formation distance. In terms of the variables to be employed here,
this ratio reduces to eBO(ka)z, where ¢ is the acoustic Mach number at the
source and BO is the coefficient of nonlinearity for the fluid. 1In order to
obtain the nondimensional form, pressure is scaled by a factor e. Hence,
the implication of this theory is that the (dimensional) pressure field will
merely be changed by a factor if the value of € is increased, while e(ka)2

is held constant. In other words, two transducers whose radii satisfy a /a1

2
= (51/52)1/2 operating at the same frequency are predicted to radiate
signals in proportion to their respective Mach numbers. This clearly cannot
be the case. For example, the number of on-axis nulls predicted by linear
theory (very small values of €) is strongly dependent on the ka value [1].
This implies that the paraxial equation, in addition to being limited to the

vicinity of the axis, should not be employed within the Fresnel diffraction

reglon.

The present analysis is descended from Ginsberg's treatment [14,15] of
a consistent nonlinear wave equation for the velocity potential. He used
the King integral [16] to generate the second corder source terms appearing
in the field equations. The hierarchy of equations were solved by
asymptzotic integration and coordinate straining transformations, based on an
assumption that the only second order effects significant to the distertion
process are those that grow with increasing distance from the transducer.
Such an assumption is fundamental to most analyses of one-dimensional waves.

Ginsterg's nonlinear King integral was analytical, in that it had quadrature




form. However, the complicated nature of the integrands necessitated

numerical evaluations of the pressure.

Discrepancies between Ginsberg's theory and experiments by Could et al
[17] were disclosed by Miao [18]. The measurements were carried out for a
high ka case (ka=114) very close to the transducer. A subsequent analysis
by Foda and Ginsberg [19] suggested the present analysis. It disclosed that
it is not appropriate in the Fresnel region to assume that all distortion is
associated with an effect that grows with increasing distance., In the
present paper we shall develop an analysis that is descriptive of the entire
field. Its predictions for the second harmonic will be seen to be in close
agreement with Gould's measurements. In addition, the investigation will
demonstrate that differences between the behavior in the Fresnel and
Fraunhoffer regions are a consequence of a variety of interacting wave
phenomena that occur everywhere in the acoustic field. An ancillary benefit
of the analysis will be a new interpretation of the King integral for linear
theory. Ginsberg's earlier results will be shown to be the long range (that
is, many wavelengths) limit of the more general theory. The present
viewpoint will lead to a Fourier series decomposition of this long range
form. That representation permits evaluations in the farther portion of the
Fresnel region, and beyond, with the same efficiency as the King integral

for the fundamental in linear theory.

I. BASIC EQUATIONS

The foundation for the formulation is the nonlinear wave equation for

the velocity potential [20], whose nondimensional form is




2 2
2y =290 3 - 1y(2¢ . 3
Ve -T2 m w % D(gg) + Vo-Ts] + 0™ (1)

<

where the nondimensional cylindrical ccordinates z and R represent,
respectively, the axial and transverse distances relative to the center of
the transducer, multiplied by the wavenumber k, and t is dimensional time

multiplied by w.

We desire to address the effect of nonlinearities at the projector-
fluid interface, as well as in the field equations. Let w(®,t) denote the
normal displacement of the projector face. As shown in Figure 1, continuity
of the partic.e velocity at the interface must be imposed at the displaced

location ¢f the grojector in the direction normal to the deformed surface.

(r\f\ Yﬁ - 3 -?-2‘ = y - —1( -al{\ 2
Cy lCos Y == = sin Y =, Weos Y, Y= tan (k=g (2

Z/K=w

We let [(R) be an amplitude shading function, possibly complex. A
general representation of monochromatic oscillation at (dimensional)
frequency w and (small) acoustic Mach number ¢ is

W o= %7 £ ¢y f(R) exp/it) + C.C,

Py

W= - 1’; e f(R) exp(it) *+ C.C. €3

I

Becauce w is O(e), the surface rotation Y may be replaced by its tangent,

For the sam: reason, Taylor series expansion allows the derivatives in Eq.




(3) to be evaluated at the undeformed location of the projector face, z = 0,

according to

2 .
cO (éﬁ + K W 3¢ 3w EEJ - W+ 0(63) (4
9z 3z 9R 3z -0

Earlier investigations expanded ¢ In a straightforward perturbaticn
series. A slight modificaticn of such an expansion leads to a sequence of
€guacions that mcre prominantly displays the role of BO in the formation of

roniinear distertion., Specifically, we let

< -
2% 0o 2, 3, PN
g = gz, v e = (5,7 + 2 ] + C(e”) ¢ 2
‘ 2 ot 2
Tre >orreszonding first and second order pertions of the wave equaticrn (')
are
- a:
™ —- ~ - Y
v a'| Z 3‘. = bona
1 3t
R 2
2 3 28,
- 5 )
T e - . = 0 i ( A
v - ~ ¥ [N ~ . ; ~ o/
Z el L ot et
at
Sunlsfving the Toundary ooindition in Zg. (5) At each perturtation ster leads
Lo
o%
.
€ = = WS ¢ an
3z - .
v =y
Z=0




‘e K — —) ( 7o)

3z at 1

Note that Eqs. (6a) and (7a) are the governing equations for linear

theory, so ¢1 is a bounded function. Consequently, any cumulative growth

effects that appear in Eq. (5) must be asssociated with ¢2. Since the

nonlinearities appear in Eq. (6b) as source terms that are proportional to

BO’

it follows that cumulative growth eflects will be proportional to 8..
J

This feature is well-documented for one-dimensional waves. The generality

of the perturbaticn treatment thus far permits us to extend this conclusion

to any nonlinear acoustic wave, not just the present one, provided that the

accustiz Mach number is a small fraction.

The first order equatisns (fa) and (7a), supplemented by the Sommerfeld

radiaticn

Tre King integral

condition, are the linear equations for an arbitrary bafffled

()|>~

The King integral provides the solution for this signal in a

u

seful for formirg the source terms in Eq. (6b). The Hankel
g

a

mplitude shading function is

~

is an inverse Hankel transform given by

exp(ic - w zY J {nRI dn £oa)
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where

i (- nz)”2 i n <1

u = (10)
(n2 - 1)1/2 ;7 n> 1

Gn = n Fn/un (11)

Note that transverse wave numbers n < 1 corrrespond to modes that are above
the cutoff frequency, and therefore propagate. In contrast, modes for n > 1

are evanescent.

Substitution of Eq. (9) into Egs. (6b) and (7b) leads to an
inhomogenecus differential equation and an inhomogeneous boundary condition.

In accord with standard procedures, we split ¢2 into two parts by defining

9, " <:>21 + ¢>22 (12)
where
. 2 3 30, °
Vo, - = 9, =8 — [—)
21 2 e 0 ot ‘Bt
36
21
— -0 (13)
< 2=0

~
anda
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2

2 3

V¢ - — =0
22 Btz 22
2 2

0% 0 K 3 ¢ k ow 3¢
22 e —pf w5 - — ) (1)

- z=0 9z ot € 9z € 3R 3z

Aside from the different form of the inhomogeneous term in the boundary
condition, Egqs. (14) are essentially the same as Eqs. (6a) and (7a). It

follows that the task of determining ¢ is quite.similar to that required

22
to obtain ¢1. The difficulty in the present case is the more complicated
form of the boundary condition, owing to Eq. (3) for w and Eq. (9) for ¢1.
Furthermore, it can be argued that the precise nature of the function f(R)
is not knewn. For example, the model of a piston transducer considers f({(R)
to be a step function, but high-frequency projectors of large diameter are
usually composed of numerous small piezoelectric elements that do not
respond ldentically, It is inappropriate to attempt to form a precise

solution satisfying an imprecise boundary condition. Accordingly, we shall

set

022 =0 (15)
Another justification for this choice comes from the recognition that

because Eqs. (14) are those for linear radiation, represents an effect

Q22
that is 0(52) at all locaticons, Other effects having this order of
magnitude, which we will evaluate later, will be seen to have negligibdle

importance.

—_
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II. SECOND ORDER NEARFIELD SIGNAL

Qur objective here is to derive an expression for ¢21 and the
corresponding pressure, without regard for breakdown of the perturbation
hierarchy resulting from cumulative growth effects. Such a representation,
which is analogous to the one derived by Ingenito and Williams [2], may be

expected to be suitable in regions reasonably close to the projector. We

begin by substituting Eq. (9) into Eq. (6b), which leads to

2 % =
vV-e - —%.. = i8 [ f G G expl2it - (p_ + pu )z]
21 atz 21 0 o o nm n m
x JO(nR) JO(mR) dm dn + C.C. (16)

Note that we have used the symmetry of the integrand with respect to m and n

to recduce the inner integral to the finite domain 0 £ m £ n.

It does not seem possible to solve Eq. (16) in exact form, because of
the presence of a product of Bessel functions. We therefore shall develop a
matched asysmptotic expansion that compares the form of ®21 in the off-axis
region (large R) to one in the paraxial region (small R)., We begin with the

off-axis analysis, for which the asymptotic representations of the Bessel

furnictions lead to

) J

o(nR) JO(nR) - - (n2 + mZ) JO(nR) JO(nR)

Qa
o)
o
O.‘Q.
o

+ 2nm J1(nR) J1(nR)



—_
(o
[

+ 2 £) g (nR) J (nR) = 2nm J(nR) J (nR)

[o8
o
0
Q.
o)

- (n2

¢ w%) 3, (aR) J.(mR) + OC1/RD)  (17)
Because the source term in Eq. (16) contains only JO(nR) JO(mR), we form the
trial solution using sums and differences of the above products of Bessel

functions. Specifically, we try

@ n
o, = JO fo G G {a(z, n, m)[Jo(nR> Jo(mR) - 4, (nR) J](mR)]

+ B(z, n, m)[JO(nR) Jo(mR) + J, (nR) J1(mR)]} expl2it

- (un + um)z] dm dn + O(1/R2) (18)

where A and B are undetermined functions. Note that these functions are not
considered to depend on R because cumulative growth is generally anticipated
to occur with increasing distance from the boundary. Also, dependence of
these functions on R would conflict with the need to satisfy the boundary

condition (13) for arbitrary values of R.

We find that Eq. (18) satisfies Eq. (16) for all R (assuming R is

large), provided that

2 2
"o oo ' - -
A 2N1A + (N1 N2 YA 180/2 (19a)

2

"o * 2_ -
B 2N1B + (N1 N3 )B 180/2 (19b)
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where a prime denotes differentiation with respect to z, and the
coefficients Nj are functions of n and m, given by

N-un*u.N-[(n+m)2‘“]”2

(20)

We obtain the boundary conditions for A and B by requiring that Eq. (18)

satisfy the boundary condition (13), which leads to

A - N1 A=0, B'- N1 B=0 forz=20 (2m)

In addition to the foregoing, the functions A and B must be chosen such that

@21 does not represent a signal coming from the farfield toward the

projector.

Before we address the solution of Eqs. (19) subject to Egs. (21), we
shall consider the paraxial approximation. We wish to derive a solution for

¢21, valid for small R, that may be compared to the off-axis form in Eq.

(18). The usual power series expansions of Bessel functions for small
argument is unsuitable, since our objective is to identify the functional

form of ¢, Instead, we develop a representation that is derived from the
[

1

Neumann addition theorem [21],

87
P = v mR
JJ(nR + mR) kf-mJj"k<nR) J, (mR)

(@A)




J(nR - mR) = § J

3 L j+k(nR) Jk(mR) (22}

In the region where R is small, J,(nR) decreases very rapidly for increasing

J

J and fixed nR. Furthermore, J_.(nR) = (-'1)‘j Jj(nR). As a result, we find

J

that in the paraxial region,
1 I
Jo(AR) J (mR) = [Jo(nR + mR) + J(nR mR)] + O(R) (23)

We employ Eq. (23) to represent the source term in Eq. (16). A
suitable trial solution for ¢21 in the paraxial region depends on R in the

same manner, Hence, we set

® (n
+ 1
¢21 = [o [o GnGm [C(z, n, m) Jo(nR + mR) + D(z, n, m) JO(nR mR) ;

x expl2it - (un + um)z] dm dn (24)

Substitution of Eq. (24) into the paraxial approximation of Eq. (16), anc
into the boundary condition (13), leads to an important observation -- the
equations governing C and D are identical to Egs. (19) for A and B,
respectively.

Le% us compare the two forms of ¢ Eqs. (18) and (24), under the

21’

~

condition that C = A and D = B, Since the exponential factors in each
equation are the same, the two representations are identical in their
dependence on t and z. For the transverse direction, we note that when nR
and mR are small, the first two terms in a Taylor series expansions of the

coefficient of C in Eq. (24) and of the coefficient of A in Eq. (18) are
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identical. The same statement applies to the coefficients of B and D. 1In
contrast, when nR and mR are large, the asymptotic expansions of these

corresponding coefficients are not alike.

The conclusion that we derive from these considerations is that the
paraxial representation, Eq. (24), in its range of validity gives the same
solution as that which would be obtained if the off-axis solution, Eq. (18),
were applied in the paraxial region. 1In other words, the off-axis form is
actually correct for the entire field. This confirms Ginsberg's hypothesis
(14] that the physical processes causing nonlinear interactions are not
dependent on the transverse position.

Now that we have identified the dependence of ¢ on t and R, we return

21
to the evaluation of the amplitude factors A and B, which are functions of
z. Ginsberg [14] and Miao [18] performed this analysis by using asymptotic
methods to solve the differential equations (19), based on a limitation to
comparitively long ranges (large z). We shall develop a more general

solution here. Adding the complementary and particular solutions of Egs.

(19) leads to

0
A= ——F———— + A exploy,z) + A, explo,,2)
2N - N5
1 2
180
Boe —F———* B, eXp(cB1z) + A2 exp(oazz) (25)
2(N1 - N3 )




where the coefficients oAj and ij are the roc s of the respective

characteristic equations. These values are readily found to be

Al 1 2 A2 1 2

g, * N1 - N3 y Ogy = N, ¥ N3 (26)

We evaluate the constants Aj and B, by satisfying the boundary conditions,

J

Eq. (21), as well as the radiation condition for ¢ The dependence on t

21°
and z appearing in Eq. (18) is A(z) exp(it - N1z) and B(z) exp(it - N1z).

In view of Egs. (25), this means that ¢ contains terms having the

21
appearance of explit - (N1 - cAj) 2] and explit - (N1 - ch) zl. Any term
in which either the real or imaginary part of N1 - cAj or N1 - UBj is

positive will violate the condition that the signal is either an outgoing

wave, or an exponentially decaying wave. Since N, is positive as either a

3

real or imaginary number, we require that

AL =B_ =0 (27a)

The constants A1 and B1 obtained by satisfying Eg. (21) are

A, = - ———, B, = - (27v)

which, when substituted into Egqs. (25) yield

19
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0
A = [N, - N, exp[(N, - N.)z1} (28a)
2 _ 2 2 1 1 2
2(N, N, SN,
o { }

B = N, - N, exp[(N, - N_)z] (28b)

2 (8% - N32)N3 300 v

We form ¢21 by substituting these expressions into Eq. (18). Once @1

and ®21 are known, it is a simple matter to describe the corresponding

pressure signal., The pressure relation obtained from Kelvin's equation

[20), specialized to the case of an O(¢) signal, is

2
P/o0

Q2
(32

Qr
(el
rf—

(Go-Vo - (gz} Te 0(ed) (29)

Recall that we have set ®22 = 0, so °2 = @21. Therefore, the perturbation

expansion, Eg. (5), and some simple manipulations lead to

2 2
T
P72 % T 3 U3t 1352

ERCI PRI 0(ed) (30)

We now recall Eq. (9) for ®, and Eq. (18) for ¢ Their substitution into

21°
the above yields an expression for the pressure in the form of a single
integral for the O(¢) term and two double integrals for the O(ez) terms.

The result may be written as

2 1 1 . . ~
p/poco - [5 FT(z, R) exp(it) + > ‘2(2, R) exp(21t)] + C.C., + FO (31)




where F1 and F2 are the complex amplitudes of the fundamental and second

harmonic, respectively, and T. is the mean value radiation pressure. When

0

Eq. (10) is used to replace Gn' these quantities are given by

nF
l‘1 = € - exp(- unz) Jo(nR) dn (32a)
"n
0
1 2 i annFm
F2 =€ —:;;;— {[81 (A + B) + 3~ “num] JO(nR) Jo(mR)
0“0
- [81 (A -8) + nm] J, (nR) J1(mR)]} expl= (u_
+ um)2] dm dn (32b)
n
nmy _V
- _1 2 nm oo * ,
T 5 € (-1 + “n”m] Jo(nR) J (mR)

*
+ nmJ,nR) J (mR)]} expl- (un + um)z] dm dn + C.C. (32¢)

The fundamental amplitude is the linear King integral, which cannot
been evaluated in closed form. Analytical integration of F2 and rO
therefore does not seem to be feasible. However, it is possible to evaluate

the coefficients by numerical methods. An important aspect of such an

evaluation is the presence of three types of singularities.

In terms of its implications for later developments, the most important
singularity contained in Egqs. (32) occurs in the coefficient A when m = n,
In this situation, N1 and N2 both equal 2un, which causes the denominator in

Eq. (28a) to vanish. A similar sftuation arises for the function B when m =

n = 0, In which case N] and N3 both egual 2i. Neither situation is a




serious complication for a numerical integration, because both A and B have

finite limits as m * n. In the case of A, Taylor series expansion in powers

of N‘ - N2 gives
ig
0 1 _
Ae s Nl gy - Nz
1 272
1 2.2
+ g = N)%2% eene] (33)

The expansicn for B near n = m = 0 13 the same as the foregoing, except tha

N, replaces N As m + n, we find that

3 2°

i3 . is
lim _ o e lim _ o .
o A = — (1 + cuT * ) 10 B = T (1 + 2iz Yy (38)
104
n n=+90

The coefficzients A and B contain additional singularities, associated
with N2 = 0 or N3 = 0., Reference to Fgs. (20) shows that these occur in the

integration domain along m = 2 - nand m = n - 2, respectively. The rcots

and ¢ or 0., and ¢ in Eqs. (26) are equal along the respective

a1 A" B1 B2’
lines. The second homogenecus solution, which is obtained in this case by
multiplying the first solution by 2z, is needed to satisfy the bcundary

concdition. Thus, this is a finite singularity.

The third singularity that occurs in the complex coefficients rj is
asscciated with the axial wave number M Its definition in Eq. (10) shows
that Wy * 0 as n + 1, which leads to a singularity due to the presence c¢f

this parameter i{n the denominators of both of Eqs. (32). The singularity




;nay be removed by a simple change of variables. We write Eqs. (32) in the

generic forms

n

= m dm dn
r. = I l{ A.(n'm,Z'R> — =+ c.C. ] J - 092 (‘35)
J 0’0 4 “m Mn

where the A, are functions that have finite limits as n + 1 andm -+ 1. We

J

replace the wave number: n and m by new variables g and £, such that
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n/2 (n/2
=~ [ A (cos g,c0s 8,2,R,t) d8 dg

o .m/2
-~ 1 J ' A (z2csh g,cos 8,z,R,t) d9 dg
0o°‘o0 J

+
—
o 8
S———
8
=
P
(9]
(e
&)
oy
¥y
0
O
[&]
oy
D
™
prs)
T
~—
o
@D
Q
v
+
(@]
(@]
[
"
<
n
ta)
p]




v

—— e —y—— —

The first integrals for FO and r2 represents the second order effects
associated with interactions between propagating modes. Similarly, thz
third integrals arise from interactions between evanescent modes, while
interaction between propagating and evanescent modes gives rise to the
second integrals, The integration scheme we employed for each of these
double integrals is based on a nine point integration scheme for a square

segment [21], while linear interpolation was effective for the single

integral.

Well-documented experimental data describing nonlinear effects in the
nearfield is quite sparse. Gould et al [17) measured the field generated by

a piston vinrating at 2.58 MHz when c. = 1475 m/s, which corresponds to k =

0

10.99 mm—1. The geometrical radius was 10.1 mm, but subsequent analysis of
the primary frequency field caused Ingenito and Williams [2] to suggest that
a = 10,4 mm is more appropriate. The results were presented in Gould's
paper as selected traces of the amplitudes of the fundamental and second
harmonic, either along or transverse to the axis of the beam. Such traces
were obtained by photographing an oscilloscope screen, so they are difficult
to read accurately. However, traveling microscope readings of the axial
distribution of the second harmonic were reported by Ingenito and Williams

(2], while Rogers [3] gave comparable data for transverse distribution at

selected locations.

Figure 2 compares the measured axial distribution of the second
harmonic with our prediction. The projector in this case was driven at a
source pressure of 5 atmospheres, which corresponds to € = 2.&9(10_u)

2
because the source pressure equals epoco . The sound pressure level at an

ou




axial antinode would have been 237 dB//1uPa if the projector were an ideal
piston and nonlinearity had no effect. The overall agreement between theory
and experiment is quite good. It should be noted that our prediction for
the farthest dip, near the nondimensional distance z = 1400, is somewhat
less deep than that predicted by Ingenito and Williams, while the dip near z
= 600 is comparable to their prediction and the one near z = 800 is
substantially deeper. Our computations indicate that many more such dips
occur with decreasing distance from the projector, but no more occur beyond

the region cescribed by Figure 2.

No physical 2xplanation for such dips has been offered in the past. We
cannot say for certain what the mechenism is, because the second harmonic is
a field effect resulting from a three-iimensional distribution of sources.

A plausible explanation is that the ancinodes of the fundamental field,
which occupy small regions, generate the largest contribution to the
nonlinear sources. It seems logical to consider the peaks and valleys of
the second harmonic axial aistribution to arise from constructive and

destructive interference of the radiation from these local "hotspots".

Figure 3 describes the transverse distribution of the second harmonic
at 50 mm from the projector for the same parameters as Figure 2; the
measurements are taken from Rogers description of the experiment. The
dotted line for the King integral prediction of the fundamental is provided
as a reference. (The dashed curve describing the farfield approximation
concerns with developments.) The agreement between theory and experiment
for the second harmonic amplitude is quite good. The fact that the overall

level of the predicted result is somewhat lower than the measurements might

25




be attributable to the aforementioned uncertainty regarding the appropriate
value of ka. A small change in this quantity can significantly shift the
location of the maxima and minima. Another uncertainty regarding the
comparison between our prediction and the measured data is the possibility
that the projector did not act as a true piston, which is indicated by the
aforementioned correction for the active radius. We also should note that
the wire probe used for the measurements had a diameter of 28.6
nondimensional units., This limits the ability to resolve fine scale
features, due to spatial averaging of the amplitudes. This limitation,
which was noted by Gould et al, is exemplified by the transverse
distribution in Figure 4, where the axial distance z = 589 is selected to
match the axial minimum in Figure 2. As may be seen in this figure, the
probe diameter is comparable to the extent of the depressed region

surrounding the axis.

Although the theoretical development thus far 1is consistent with
experiment, the result is not sufficient. We shall next employ the
description as the foundation for an extension to larger distances from the
projector. In addition to enhancing the domain of validity, the extended

theory will be descriptive of a waveform.

III. RENORMALIZATION ANALYSIS

An important aspect of Figure 2 is the overall rise in the level of the

second harmonic with increasing axial distance. In general, such behavior
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arises in nondispersive media because nonlinearity provides a self-
interaction mechanism for the linearized signal. The basic concern when
growth is encountered in a regular perturbation series, such as Eq. (5), is
that the second order term might exceed the estimate of its magnitude. Such
behavior 13 known as nonuniform validity. In this section, we will derive

an expression for the pressure that behaves properly at 21! Jocations.

Fito.v, we 3hall introduce a simplification that results from inspection
of the quantitative results, In all situations of interest, e is extremely
smail, for example, € = 0.0002 for a signal whose maximum on-axis amplitude
is 240 dB//1 uPa. Also, recall that cumulative growth of the O(e2) signal

can only arise in ¢ In the present context, this is manifested by an

21
increase in the magnitude of the functions A and B with increasing z, as
exhibited in Egs. (34). The terms appearing in Egs. (32b and 32c) that do
not depend on A or B arise either from the quadratic term that was inserted
intc the perturbation series, Eq. (5), or from nonlinearities in Kelvin's
equation (29). Both effects remain bcunded for all z. It is reasonable
therefore that any term in either r2 and PO that does not originate from the

second order perturbation ¢ will be smaller than the fundamental signal by

21

a factor e.

Whern we ignore the constant magnitude 0(52) effects, the expression for

pressure obtained from Egs. (31) and (32) under this simplification is

2 1 [
p/pocO -3 € [o Gn exp(it unz) JO(nR) dan
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® n
- 216 J [ GG {aA [J.(nR) J_(mR) - J_(nR) J1(mR)]
0 ‘g M 0 0 1
+ + 1

B [Jy(nR) J (mR) + J. (nR) J,(mR)]]

x exp[2it - (un + um)z] dm dn + C.C. (38)

Note that we have returned to the use of Gn as the transform of the

transducer shading function solely as a convenience.

The first step in correcting the growth of the O(ez) terms is to write
the pressure in the form of waves in the transverse, as well, as axial
direction. Such a representation is suggested by the asymptotic expansions

27 Bessel functions for large arguments [21], which leads to

1/ \ ~
3 (nR) = (1/27mR ) 2 expli(nR - n/%)] + C.C.

T ( -
UO‘nR) JO(mR) Jx(nR) J1(mR)

/
= (1/7%0m82)" 2 explil(n + mR - w2]} + c.cC. (39)
The part listed In each function above, when combined with the exponential
terms already appearing in Eq. (38), represents a wave in the off-axis
regior that seems to propagate in the direction of decreasing R and

increasing z. Similarly, the complex conjugate part corresponds in that

region to waves that propagate in the direction of increasing R and z.

In order to highlight this wave-like feature for an arbitrary

transverse location, we rewrite Jo(nR) identically as
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- = - — . y
Jo(nR) = = [JO(nR) + 1J1(nR)] + C.C. = 3 Q exp(is ) + C.C (40a)
where
- i - 4
Qn cos An JO(nR) , Qn sin An Jl(nR) (40b)
Note that Qn and An are functions of R, as well as n, but such dependence is
not indicated in the notation as a matter of con-enience. Tue second
tunction in Eqs. (39) may also be expressed in terms of Qn and An, according

to

Jo(nR) JO(mR) - J1(nR) J1(mR)

[JO<nR) + 14, (nR)] [Jo<ma) + 1J,(aR)] + C.C.

) —

Q Q exp[i(An + Am)] +C.C. (uoe)

M

When we substitutc Egs. (U40) into Eqs. (38), we decompose the signal into

two parts, such that

2 [”
P/Pgey = I (py + Pyl an (u1)
where
1 n
- — - _u' N
Py m anQn exp(it Wz * iAn) {1 ie fo GQO (A exp(it
- wz 18 ) + B exp(it = uz - 1Am)] dm} + C.C. (42a)
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. n
1 . . ;
- -— - - _u
Pry m eGnQn exp(it Mz lAn) {1 ie Io GQO [A exp(it

= uz - 18 ) ¢ B oexp(it - uz s mm)] dm} + c.c. (42b)

It is important to recognize that no new approxfmrations are contained in the

foregoing expressions; they are identical to Eg. (38).

Wavefronts of constant phase for the I and II waves consist of surfaces

along which the phase functions

“’J(Z' B) =t - (u/Dz 8, J=1,1I (43)
are constant, A few such surfaces for n = 0.10 and n = 0,20 are depicted in
Figure 5. hie wavefronts for the two families of waves seem to be nearly
linear i{n z vs. R in each case, corresponding to nearly conical surfaces.
This property becomes evident when we take the gradient of the phase
functions in order to identify the rays for each wave.

CR aAn

T

VY, = - 44
3 ()

1
2

approximated as nR - n/4 for nR > 5. Hence, the above gradient is nearly

The value of An is approximately =nR for nR < 0.2, while it is well
constant in each region. As evidenced by Figure 5, the gradient changes
slowly in the transition region of intermediate nR. It is interesting to
note that the apex angles of these surfaces increase monotonically with
increasing n, until for n > 1, the wavefronts are parallel to the z axis,

and the waves evanesce {n that direction. It is also worth noting that this

wa_



interpretation of the signal as the superposition of two families of conical

waves is equally valid for the linear King integral.

We have seen that the O(ez) terms in both waves tend to grow at large
distances from the transducer, ultimately leading to nonuniform validity.
Furthermore, the growth in the second harmonic has not yet led to depletion
of the fundamental from its vaiue in linear theory. Both features result
t~om using as the independent variables, position coordinates that do not
correctly match the spatial scale of the nonlinear processes. To a first
order (linear) approximation, the zpproriate nonlinear variables match the
physical coordinates. However, the gradual nature of the nonlinearity
causes the two sets of variables to diverge over many axial wavelengtihs.
This leads to the concept of a coordinate straining transformation. The
process of deriving this transformation from the requirement that the proper

forms not display unbounded growth is renormalization [22].

Let a be a real variable for the I wave that reduces to the axial
distarce z when € » 0, and let Bn be the co